Submitted Papers & Preprints
- Hagemann, N., Guhl, D., Kneib, T., Möllenhoff, K. and Steiner, W. J. (2024)
Dynamic Heterogeneity in Discrete Choice Experiments - Skevas, I. and Kneib, T. (2024)
A copula-based semiparametric by-production stochastic frontier model - Schlee, M., Kant, G., Säfken, B. and Kneib, T. (2024)
Decoding synthetic news: An interpretable multimodal framework for the classification of news articles in a novel news corpus - Bruns, S.B., Herwartz, H., Islam, C.G., Kneib, T. and Malina, R. (2024)
Ambiguous empirical results are not oversold but more focused on statistical significance - Semnani, P., Bogojeski, M., Bley, F., Zhang, Z., Wu, Q., Kneib, T., Herrmann, J., Weisser, C., Patcas, F., Müller, K.-R. (2024)
A Machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery" - Brachem, J., Wiemann, P. F. V. and Kneib, T. (2024)
Bayesian Penalized Transformation Models: Structured Additive Location-Scale Regression for Arbitrary Conditional Distributions - Thielmann, A., Kneib, T. and Säfken, B. (2023)
Enhancing Adaptive Spline Regression: An Evolutionary Approach to Optimal Knot Placement and Smoothing Parameter Selection - Kant, G., Zhelyazkov, I., Thielmann, A., Weisser, C., Schlee, M., Ehrling, C., Säfken, B. and Kneib, T. (2023)
One-Way ticket to the Moon? An NLP-based insight on the phenomenon of small-scale neo-broker trading - Barna, D. M. Engeland, K., Kneib, T., Thorarinsdottir T. L. and Xu, C.-Y. (2023)
Regional index flood estimation at multiple durations with generalized additive models - Dupont, E., Marques, I. and Kneib, T. (2023)
Demystifying Spatial Confounding - Henrich, J., van Delden, J., Seidel, D., Kneib, T and Ecker, A. (2023)
TreeLearn: A Comprehensive Deep Learning Method for Segmenting Individual Trees from Forest Point Clouds - Kruse, R.-M., Säfken, B. and Kneib, T. (2023)
Measuring Neural Complexity: A Covariance Penalty Approach - Reuter, A., Thielmann, A., Weisser, C., Säfken, B. and Kneib, T. (2023)
Probabilistic Topic Modelling with Transformer Representations - Thielmann, A., Kruse, R.-M., Kneib, T. and Säfken, B. (2023)
Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean - Michels, M., von Hobe, C.-F., Merk, M. S., Kneib, T. and Musshoff, O. (2022)
The rent price ratio of individual decision-makers acting on the agricultural land market - Nadifar, M., Baghishani, H., Kneib, T. and Fallah, A. (2022)
Flexible Bayesian modeling of counts: constructing penalized complexity priors - Axenbeck, J., Berner, A., and Kneib, T. (2022)
What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity - Riebl, H., Wiemann, P. F. V. and Kneib, T. (2022):
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms - März, A., Klein, N., Kneib, T. and Mußhoff, O. (2022)
Intergenerational social mobility in the United States: A multivariate analysis using Bayesian distributional regression - Säfken, B., Kneib, T. and Wood, S. (2021)
On the degrees of freedom of the smoothing parameter