Introduction to Spectral Theory Second lecture: The spectral theorem

Ingo Witt (Göttingen)

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

> Tbilisi State University September 17-21, 2018

In this lecture, we will state the spectral theorem for bounded self-adjoint operators and sketch a proof. We closely follow Chapter VII of M. Reed and B. Simon *Methods of Modern Mathematical Physics*. Here are the single steps:

- ① Continuous functional calculus
- ② Spectral theorem: Functional calculus form (bounded functional calculus)
- Spectral theorem: Multiplication operator form
- Spectral theorem: Projection-valued measure form

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Continuous functional calculus

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint. Then there exists a unique linear map $\Phi : \mathscr{C}(\sigma(A)) \to \mathcal{L}(\mathcal{H})$ with the following properties: (a) Φ is a *-homomorphism, i.e.,

 $\Phi(fg) = \Phi(f)\Phi(g), \quad \Phi(\overline{f}) = \Phi(f)^*, \quad \Phi(1) = \mathsf{I}.$

(b) Φ is norm continuous.

(c) $\Phi(\lambda \mapsto \lambda) = A$.

Moreover, Φ has the additional properties:

(d) If
$$A\varphi = \lambda \varphi$$
, then $\Phi(f)\varphi = f(\lambda)\varphi$.

(e) $\sigma(\Phi(f)) = \{f(\lambda) \mid \lambda \in \sigma(A)\}$ (spectral mapping theorem).

(f) If $f \ge 0$, then $\Phi(f) \ge 0$.

(g) $\|\Phi(f)\| = \|f\|_{\infty}$.

By (a) and (c), if *f* is a polynomial, then $\Phi(f) = f(A)$. It suffices to prove that (g) holds when *f* is a polynomial, i.e.,

(*)
$$||f(A)|| = \sup_{\lambda \in \sigma(A)} |f(\lambda)|.$$

By the Weierstrass approximation theorem, Φ can then be uniquely extended from the set of polynomials to all of $\mathscr{C}(\sigma(A))$.

Notation Later, we will write f(A) in place of $\Phi(f)$ in general.

イロト イポト イヨト イヨト

Proof of (*)

We will show that

 $\sigma(f(\mathbf{A})) = \{f(\lambda) \mid \lambda \in \sigma(\mathbf{A})\}.$

Then (*) follows, since f(A) is normal.

- **1** Let $\lambda \in \sigma(A)$. Write $f(\mu) f(\lambda) = (\mu \lambda) g(\mu)$, where *g* is a polynomial. Then $f(A) f(\lambda) = (A \lambda) g(A)$. We infer that $f(\lambda) \in \sigma(f(A))$, since *A* − λ is not boundedly invertible.
- 2 Conversely, let $\kappa \in \sigma(f(A))$. Write $f(\mu) \kappa = a(\mu \lambda_1) \dots (\mu \lambda_k)$, where $a \neq 0$ and $k = \deg f$. If $\lambda_1, \dots, \lambda_k \notin \sigma(A)$, then

$$f(\mathbf{A}) - \kappa = \mathbf{a}(\mathbf{A} - \lambda_1) \dots (\mathbf{A} - \lambda_k)$$

is boundedly invertible, which contradicts $\kappa \in \sigma(f(A))$. Therefore, $\lambda_j \in \sigma(A)$ for some *j*, while $\kappa = f(\lambda_j)$. \Box

イロト 不得 トイヨト イヨト 二日

Two remarks

The range of Φ,

$$\operatorname{ran} \Phi = \left\{ f(A) \mid f \in \mathscr{C}(\sigma(A)) \right\},\,$$

is the C^* -algebra generated by A.

Indeed, ran Φ is *-subalgebra of $\mathcal{L}(\mathcal{H})$ by functional calculus, and it is norm closed in $\mathcal{L}(\mathcal{H})$ as $||f(A)|| = ||f||_{\infty}$ and $\mathscr{C}(\sigma(A))$ is complete.

Sac

イロト イボト イヨト イヨト 二日

Functional calculus form

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint, $\psi \in \mathcal{H}$. By the Riesz-Markov representation theorem, there exists a unique finite Borel measure $d\mu_{\psi}$ on $\sigma(A)$ such that

$$\langle f(\mathbf{A})\psi,\psi
angle = \int_{\sigma(\mathbf{A})} f(\lambda) \,\mathsf{d}\mu_{\psi}.$$

This allows to extend the functional calculus to include bounded Borel functions $f: \sigma(A) \to \mathbb{C}$.

Theorem

There is a unique linear map Φ from the bounded Borel functions on $\sigma(A)$ to $\mathcal{L}(\mathcal{H})$ such that the following holds:

- (a) Φ is a *-homomorphism,
- (b) Φ is norm continuous,
- (c) $\Phi(\lambda \mapsto \lambda) = A$,

(d) If $f_n \to f$ pointwise and $\sup_n \|f_n\|_{\infty} < \infty$, then $\Phi(f_n) \to \Phi(f)$ strongly.

Functional calculus form, II

Theorem (cont.)

Moreover, Φ has the additional properties:

- (e) If $A\varphi = \lambda \varphi$, then $\Phi(f)\varphi = f(\lambda)\varphi$.
- (f) If $f \ge 0$, then $\Phi(f) \ge 0$.

(g) If $B \in \mathcal{L}(\mathcal{H})$ commutes with A, then B commutes with $\Phi(f)$.

Again, we write f(A) in place of $\Phi(f)$.

Remark Now, the set of f(A), where *f* runs through all bounded Borel functions on $\sigma(A)$, is the von Neumann algebra generated by *A*.

Remark To get a statement like $||f(A)|| = ||f||_{\infty}$, one needs an adequate notion of "almost everywhere." One possibility is to pick an orthonormal basis $\{\varphi_n\}$ of \mathcal{H} and declare that a property holds a.e. if it holds a.e. with respect to each $d\mu_{\varphi_n}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiplication operator form

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint. Then A is unitarily equivalent to a multiplication operator, i.e., there are a measure space (X, μ) , a real-valued function $g \in L^{\infty}(X, \mu)$, and a unitary operator $U \in \mathcal{L}(\mathcal{H}, L^2(X, \mu))$ such that

 $A=U^*M_gU.$

イロト イポト イヨト イヨト

Sketch of proof, I

Definition

 $\psi \in \mathcal{H}$ is called a cyclic vector for A if the span of $\{A^n \psi \mid n \in \mathbb{N}_0\}$ is dense in \mathcal{H} .

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint with cyclic vector ψ . Then A is unitarily equivalent to $M_{\lambda \mapsto \lambda}$ on $L^2(\sigma(A), d\mu_{\psi})$.

Proof Define $U \in \mathcal{L}(\mathcal{H}, L^2(\sigma(A), d\mu_{\psi}))$ by $U(f(A)\psi) = f$ for $f \in \mathscr{C}(\sigma(A))$ and verify by direct computation that

$$\left\|f(\boldsymbol{A})\psi\right\|^{2} = \int_{\sigma(\boldsymbol{A})} \left|f(\lambda)\right|^{2} \mathrm{d}\mu_{\psi}$$

as well as $(UAU^*f)(\lambda) = \lambda f(\lambda)$. \Box

Sketch of proof, II

Recall that $\ensuremath{\mathcal{H}}$ is assumed to be separable.

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint. Then one can write

$$\mathcal{H} = \bigoplus_{n=1}^{N} \mathcal{H}_n,$$

where $N \in \mathbb{N} \cup \{\infty\}$, such that A leaves each \mathcal{H}_n invariant and $A \upharpoonright_{\mathcal{H}_n}$ possesses a cyclic vector.

Both lemmas together prove the spectral theorem in its multiplication operator form. $\hfill\square$

Ingo Witt (C	Göttingen)
--------------	------------

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Spectral projections

Definition

An assignment $\mathscr{B}(\mathbb{R}) \ni \Omega \mapsto E_{\Omega}$, where $E_{\Omega} = E_{\Omega}^* = E_{\Omega}^2 \in \mathcal{L}(\mathcal{H})$ is said to be a projection-valued measure if the following conditions are met:

•
$$E_{\emptyset} = 0, \ E_{[-M,M]} = I_{\mathcal{H}}$$
 for some $M > 0$,

•
$$E_{\Omega}E_{\Omega'}=E_{\Omega\cap\Omega'},$$

• If
$$\Omega_k \uparrow \Omega$$
, then $E_{\Omega} = s \operatorname{-lim}_{k \to \infty} E_{\Omega_k}$.

For $\lambda \in \mathbb{R}$, set $E_{\lambda} = E_{(-\infty,\lambda]}$. Then, for any $\psi \in \mathcal{H}$, $d\langle E_{\lambda}\psi,\psi\rangle$ is a finite Borel measure, of total mass $\|\psi\|^2$. Hence, setting

$$\langle \mathsf{A}\psi,\psi
angle = \int_{-\infty}^\infty \lambda\,\mathsf{d}\langle \mathsf{E}_\lambda\psi,\psi
angle$$

defines, by polarization, a linear bounded operator A on H.

Ingo Witt (Göttingen)

Projection-valued measure form

Theorem

There is a one-to-one correspondence between bounded self-adjoint operators A and projection-valued measures $\{E_{\Omega}\}_{\Omega \in \mathscr{B}(\mathbb{R})}$.

Remarks

Notation $\{E_{\Omega}\} = \{E_{\Omega}^{A}\}$ is called the spectral measure of *A*.

Ingo	Witt	(Göttingen)
------	------	-------------

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Sketch of proof

1. Theorem holds for multiplication operators.

Indeed, $E_{\Omega}^{g} = M_{\chi_{\{g \in \Omega\}}}$. Then (use the Riemann-Stieltjes integral)

$$\begin{split} \int_{-\infty}^{\infty} \lambda \, \mathsf{d} \langle E_{\lambda}^{g} \psi, \psi \rangle &\approx \sum_{j=1}^{k} \mu_{j} \int_{\{\lambda_{j-1} < g \leq \lambda_{j}\}} |\psi|^{2} \, \mathsf{d} \mu \\ &\xrightarrow{\sup_{j} |\lambda_{j} - \lambda_{j-1}| \to 0} \int_{X} g \left|\psi\right|^{2} \, \mathsf{d} \mu = \langle M_{g} \psi, \psi \rangle, \end{split}$$

where $\lambda_0 < \lambda_1 < \ldots < \lambda_k$ is a partition of ran g and $\mu_j \in [\lambda_{j-1}, \lambda_j]$.

2. For arbitrary *A*, write $A = U^* M_g U$.

Then $E_{\Omega}^{A} = U^{*}E_{\Omega}^{g}U$ and

$$A = U^* M_g U = \int_{-\infty}^{\infty} \lambda \, \mathrm{d}(U^* E^g_{\lambda} U) = \int_{-\infty}^{\infty} \lambda \, \mathrm{d}E^A_{\lambda}.$$

Integrals here are Lebesgue-Stieltjes integrals in the weak sense.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further examples

Let A be an N × N Hermitian matrix with eigenvalues λ₁ ≤ λ₂ ≤ ... ≤ λ_N and eigenvectors φ₁,..., φ_N chosen to form an orthonormal basis of C^N. Regarding A ∈ L(C^N) as self-adjoint operator on C^N, we have that

$$E_{\Omega} = \sum_{j: \ \lambda_j \in \Omega} \langle \cdot, \varphi_j \rangle \varphi_j.$$

2 Let *A* be a compact self-adjoint operator with eigenvalues λ_j and eigenfunctions φ_j , again chosen to form an orthonormal basis. Then the same formula for E_{Ω} holds.

3

200

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Given a bounded Borel function *f*, we recover f(A) for a bounded self-adjoint operator *A* with spectral measure dE_{λ} as

$$f(\mathbf{A}) = \int_{-\infty}^{\infty} f(\lambda) \,\mathrm{d}\mathbf{E}_{\lambda},$$

where (again) the integral has to be understood as a Lebesgue-Stieltjes integral in the weak sense.

3

イロト イポト イヨト イヨト

Classification of the spectrum

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint. Then

 $\mathcal{H} = \mathcal{H}_{\mathsf{pp}}(A) \oplus \mathcal{H}_{\mathsf{ac}}(A) \oplus \mathcal{H}_{\mathsf{sc}}(A),$

where

$$\begin{split} \mathcal{H}_{\mathsf{pp}}(\mathbf{A}) &= \left\{ \psi \in \mathcal{H} \mid \mathsf{d}\mu_{\psi} \text{ is supported in a countable set} \right\}, \\ \mathcal{H}_{\mathsf{ac}}(\mathbf{A}) &= \left\{ \psi \in \mathcal{H} \mid \mathsf{d}\mu_{\psi} \ll \mathsf{d}\lambda \right\}, \\ \mathcal{H}_{\mathsf{sc}}(\mathbf{A}) &= \left\{ \psi \in \mathcal{H} \mid \mathsf{d}\mu_{\psi} \perp \mathsf{d}\lambda, \text{ but with no point mass} \right\}. \end{split}$$

Here, pp - pure point, ac - absolutely continuous, sc - singularly continuous.

Ingo Witt (Göt	tingen)
----------------	---------

Proposition

Let $* \in \{pp, ac, sc\}$. Then $\mathcal{H}_*(A)$ is invariant for A. Moreover, the spectrum of $A \upharpoonright_{\mathcal{H}_*(A)}$ is purely * in the sense that, for $\# \in \{pp, ac, sc\} \setminus \{*\}$,

$$\mathcal{H}_{\#}\left(A\!\upharpoonright_{\mathcal{H}_{*}(A)}\right)=\{0\}.$$

We write $\sigma_*(A) = \sigma(A \upharpoonright_{\mathcal{H}_*(A)})$. Note that

$$\sigma(\mathbf{A}) = \sigma_{\mathsf{pp}}(\mathbf{A}) \cup \sigma_{\mathsf{ac}}(\mathbf{A}) \cup \sigma_{\mathsf{sc}}(\mathbf{A}),$$

but $\sigma_{pp}(A)$, $\sigma_{ac}(A)$, and $\sigma_{sc}(A)$ need not be disjoint (as compact subsets of \mathbb{R}).

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ