Introduction to Spectral Theory Second lecture: The spectral theorem

Ingo Witt (Gottingen) ¨

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

Tbilisi State University September 17-21, 2018

 Ω

In this lecture, we will state the spectral theorem for bounded self-adjoint operators and sketch a proof. We closely follow Chapter VII of M. Reed and B. Simon *Methods of Modern Mathematical Physics*. Here are the single steps:

- ¹ Continuous functional calculus
- ² Spectral theorem: Functional calculus form (bounded functional calculus)
- ³ Spectral theorem: Multiplication operator form
- ⁴ Spectral theorem: Projection-valued measure form

 \equiv

 Ω

イロト イ押ト イヨト イヨト

Continuous functional calculus

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint. Then there exists a unique linear map* $\Phi: \mathscr{C}(\sigma(\mathcal{A})) \to \mathcal{L}(\mathcal{H})$ with the following properties:

(a) Φ *is a* ∗*-homomorphism, i.e.,*

 $\Phi(fg) = \Phi(f)\Phi(g), \quad \Phi(\overline{f}) = \Phi(f)^*, \quad \Phi(1) = 1.$

- (b) Φ *is norm continuous.*
- (c) $\Phi(\lambda \mapsto \lambda) = A$.

Moreover, Φ *has the additional properties*:

(d) If
$$
A\varphi = \lambda\varphi
$$
, then $\Phi(f)\varphi = f(\lambda)\varphi$.

(e) $\sigma(\Phi(f)) = \{f(\lambda) \mid \lambda \in \sigma(A)\}$ (spectral mapping theorem).

(f) *If f* \geq 0, then $\Phi(f) \geq 0$.

$$
(g) \|\Phi(f)\|=\|f\|_{\infty}.
$$

By (a) and (c), if *f* is a polynomial, then $\Phi(f) = f(A)$. It suffices to prove that (g) holds when *f* is a polynomial, i.e.,

$$
||f(A)|| = \sup_{\lambda \in \sigma(A)} |f(\lambda)|.
$$

By the Weierstrass approximation theorem, Φ can then be uniquely extended from the set of polynomials to all of $\mathcal{C}(\sigma(A))$.

Notation Later, we will write *f*(*A*) in place of Φ(*f*) in general.

 \equiv

 Ω

イロト イ母 トイラト イラト

Proof of (*)

We will show that

 $\sigma(f(A)) = \{f(\lambda) \mid \lambda \in \sigma(A)\}.$

Then (*) follows, since *f*(*A*) is normal.

- 1 Let $\lambda \in \sigma(A)$. Write $f(\mu) f(\lambda) = (\mu \lambda) g(\mu)$, where g is a polynomial. Then $f(A) - f(\lambda) = (A - \lambda) g(A)$. We infer that $f(\lambda) \in \sigma(f(A))$, since $A - \lambda$ is not boundedly invertible.
- 2 Conversely, let $\kappa \in \sigma(f(A))$. Write $f(\mu) \kappa = a(\mu \lambda_1) \ldots (\mu \lambda_k)$. where $a \neq 0$ and $k = \deg f$. If $\lambda_1, \ldots, \lambda_k \notin \sigma(A)$, then

$$
f(A) - \kappa = a(A - \lambda_1) \dots (A - \lambda_k)
$$

is boundedly invertible, which contradicts $\kappa \in \sigma(f(A))$. Therefore, $\lambda_j \in \sigma(A)$ for some *j*, while $\kappa = f(\lambda_j)$. \Box

 Ω

 (0.11) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Two remarks

Φ The range of Φ ,

$$
\mathsf{ran}\,\Phi=\{f(A)\mid f\in\mathscr{C}(\sigma(A))\}\,,
$$

is the *C* ∗ -algebra generated by *A*.

Indeed, ran Φ is $*$ -subalgebra of $\mathcal{L}(\mathcal{H})$ by functional calculus, and it is norm closed in $\mathcal{L}(\mathcal{H})$ as $||f(A)|| = ||f||_{\infty}$ and $\mathcal{C}(\sigma(A))$ is complete.

2
$$
f(M_g) = M_{f \circ g}
$$
 for $g \in L^{\infty}(X, \mu)$, $f \in \mathcal{C}(\text{ran } g)$.

 \equiv

 OQ

イロト イ母 トイラト イラト

Functional calculus form

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint, $\psi \in \mathcal{H}$. By the Riesz-Markov representation theorem, there exists a unique finite Borel measure $d\mu_w$ on $\sigma(A)$ such that

$$
\langle f(A)\psi,\psi\rangle=\int_{\sigma(A)}f(\lambda)\,d\mu_\psi.
$$

This allows to extend the functional calculus to include bounded Borel functions *f* : $\sigma(A) \rightarrow \mathbb{C}$.

Theorem

There is a unique linear map Φ *from the bounded Borel functions on* $\sigma(A)$ *to* $\mathcal{L}(\mathcal{H})$ *such that the following holds:*

- (a) Φ *is a* ∗*-homomorphism,*
- (b) Φ *is norm continuous,*
- (c) $\Phi(\lambda \mapsto \lambda) = A$,

(d) If $f_n \to f$ $f_n \to f$ $f_n \to f$ pointwise and $\sup_n ||f_n||_{\infty} < \infty$, then $\Phi(f_n) \to \Phi(f)$ strongly.

Functional calculus form, II

Theorem (cont.)

Moreover, Φ *has the additional properties*:

- (e) If $A\varphi = \lambda\varphi$, then $\Phi(f)\varphi = f(\lambda)\varphi$.
- (f) *If f* \geq 0, then $\Phi(f) \geq 0$.

(g) If $B \in \mathcal{L}(\mathcal{H})$ *commutes with A, then B commutes with* $\Phi(f)$ *.*

Again, we write $f(A)$ in place of $\Phi(f)$.

Remark Now, the set of *f*(*A*), where *f* runs through all bounded Borel functions on $\sigma(A)$, is the von Neumann algebra generated by A.

Remark To get a statement like $||f(A)|| = ||f||_{\infty}$, one needs an adequate notion of "almost everywhere." One possibility is to pick an orthonormal basis $\{\varphi_n\}$ of $\mathcal H$ and declare that a property holds a.e. if it holds a.e. with respect to each d $\mu_{\varphi_{n}}.$

 $(1 + 4\sqrt{3}) + 4\sqrt{3} + 4\sqrt{3} + \sqrt{3} + \sqrt{3} + 4\sqrt{2}$

Multiplication operator form

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint. Then* A *is unitarily equivalent to a multiplication operator, i.e., there are a measure space* (X, μ) *, a real-valued function* $g \in L^{\infty}(X, \mu)$ *, and a unitary operator* $U \in \mathcal{L}(\mathcal{H}, L^2(X, \mu))$ *such that*

 $A = U^* M_g U$.

 Ω

Sketch of proof, I

Definition

 $\psi \in \mathcal{H}$ is called a cyclic vector for *A* if the span of $\{A^n\psi \mid n\in\mathbb{N}_0\}$ is dense in H .

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint with cyclic vector* ψ *. Then* A is *unitarily equivalent to M*_{$\lambda \mapsto \lambda$ *on L*²(σ (*A*), *d* μ_{ψ}).}

Proof Define $U \in \mathcal{L}(\mathcal{H}, L^2(\sigma(A), d\mu_{\psi}))$ by $U(f(A)\psi) = f$ for $f \in \mathscr{C}(\sigma(A))$ and verify by direct computation that

$$
||f(A)\psi||^2 = \int_{\sigma(A)} |f(\lambda)|^2 d\mu_{\psi}
$$

as well as $(UAU^* f)(\lambda) = \lambda f(\lambda)$. \square

 Ω

イロト イ何ト イヨト イヨト ニヨー

Sketch of proof, II

Recall that H is assumed to be separable.

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint. Then one can write*

$$
\mathcal{H}=\bigoplus_{n=1}^N\mathcal{H}_n,
$$

where $N \in \mathbb{N} \cup \{\infty\}$, such that A leaves each \mathcal{H}_n invariant and A \mathcal{H}_n *possesses a cyclic vector.*

Both lemmas together prove the spectral theorem in its multiplication operator form. \square

 Ω

 $(0.11 \times 10^6) \times (0.31 \times 10^6) \times (0.31 \times 10^6)$

Spectral projections

Definition

An assignment $\mathscr{B}(\mathbb{R})\ni\Omega\mapsto\mathcal{E}_\Omega,$ where $\mathcal{E}_\Omega=\mathcal{E}^*_\Omega=\mathcal{E}^2_\Omega\in\mathcal{L}(\mathcal{H})$ is said to be a projection-valued measure if the following conditions are met:

$$
\circ\ \textit{\textsf{E}}_{\emptyset}=0,\ \textit{\textsf{E}}_{\textsf{[-M,M]}}=\textsf{I}_{\mathcal{H}}\ \text{for some}\ \textit{M}>0,
$$

$$
\circ\;E_{\Omega}E_{\Omega'}=E_{\Omega\cap\Omega'},
$$

• If
$$
\Omega_k \uparrow \Omega
$$
, then $E_{\Omega} = s$ - $\lim_{k \to \infty} E_{\Omega_k}$.

For $\lambda \in \mathbb{R}$, set $E_\lambda = E_{(-\infty,\lambda]}$. Then, for any $\psi \in \mathcal{H}$, d $\langle E_\lambda \psi, \psi \rangle$ is a finite Borel measure, of total mass $\|\psi\|^2.$ Hence, setting

$$
\langle A\psi,\psi\rangle=\int_{-\infty}^{\infty}\lambda\operatorname{\mathsf{d}}\langle E_\lambda\psi,\psi\rangle
$$

defines, by polarization, a linear bounded operator *A* on H.

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Projection-valued measure form

Theorem

There is a one-to-one correspondence between bounded self-adjoint operators A and projection-valued measures $\{E_{\Omega}\}_{\Omega \in \mathscr{B}(\mathbb{R})}$ *.*

Remarks

- \bigcirc d μ_{ψ} = d $\langle E_{\lambda}\psi,\psi\rangle$.
- 2 $E_0 = \chi_0(A)$.

Notation ${E_{\Omega}}={E_{\Omega}^A}$ is called the spectral measure of *A*.

 \equiv Ω

イロト イ母 トイラト イラト

Sketch of proof

1. Theorem holds for multiplication operators.

Indeed, $\mathcal{E}_{\Omega}^g = \mathcal{M}_{\chi_{\{g \in \Omega\}}}$. Then (use the Riemann-Stieltjes integral)

$$
\int_{-\infty}^{\infty} \lambda \, d \langle E_{\lambda}^{g} \psi, \psi \rangle \approx \sum_{j=1}^{k} \mu_{j} \int_{\{\lambda_{j-1} < g \leq \lambda_{j}\}} |\psi|^{2} \, d\mu
$$
\n
$$
\xrightarrow{\sup_{j} |\lambda_{j} - \lambda_{j-1}| \to 0} \int_{X} g |\psi|^{2} \, d\mu = \langle M_{g} \psi, \psi \rangle,
$$

where $\lambda_0 < \lambda_1 < \ldots < \lambda_k$ is a partition of ran g and $\mu_i \in [\lambda_{i-1}, \lambda_i]$.

2. For arbitrary *A*, write $A = U^* M_g U$.

 $E^A_\Omega = U^* E^g_\Omega U$ and

$$
A=U^*M_gU=\int_{-\infty}^{\infty}\lambda\,d(U^*E_{\lambda}^gU)=\int_{-\infty}^{\infty}\lambda\,dE_{\lambda}^A.
$$

Integrals here are Lebesgue-Stieltjes integrals in the weak sense. \Box

K ロ ▶ K (日) | K 코 > K 코 > 「코 → 9 Q (V

Further examples

 Φ Let *A* be an $N \times N$ Hermitian matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$ and eigenvectors $\varphi_1, \ldots, \varphi_N$ chosen to form an orthonormal basis of $\mathbb{C}^N.$ Regarding $\mathcal{A} \in \mathcal{L}(\mathbb{C}^N)$ as self-adjoint operator on $\mathbb{C}^{\mathsf{N}},$ we have that

$$
\mathcal{E}_{\Omega} = \sum_{j\colon \lambda_j \in \Omega} \langle \cdot, \varphi_j \rangle \varphi_j.
$$

2 Let A be a compact self-adjoint operator with eigenvalues λ_i and eigenfunctions φ_j , again chosen to form an orthonormal basis. Then the same formula for *E*_○ holds.

 Ω

 (0.11) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Given a bounded Borel function *f*, we recover *f*(*A*) for a bounded self-adjoint operator A with spectral measure dE_λ as

$$
f(A)=\int_{-\infty}^{\infty}f(\lambda)\,\mathsf{d}E_{\lambda},
$$

where (again) the integral has to be understood as a Lebesgue-Stieltjes integral in the weak sense.

 OQ

 $4 \oplus x + y = x + 4$

Classification of the spectrum

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint. Then*

 $\mathcal{H} = \mathcal{H}_{\text{DD}}(\mathcal{A}) \oplus \mathcal{H}_{\text{ac}}(\mathcal{A}) \oplus \mathcal{H}_{\text{sc}}(\mathcal{A}),$

where

 $\mathcal{H}_{\text{DD}}(A) = \{\psi \in \mathcal{H} \mid d\mu_{\psi} \text{ is supported in a countable set}\},\$ $\mathcal{H}_{ac}(A) = \{ \psi \in \mathcal{H} \mid d\mu_{\psi} \ll d\lambda \},$ $\mathcal{H}_{\text{sc}}(A) = \{ \psi \in \mathcal{H} \mid d\mu_{\psi} \perp d\lambda \}$, but with no point mass $\}$.

Here, pp - pure point, ac - absolutely continuous, sc - singularly continuous.

 Ω

イロト イ押ト イラト イラト・ラー

Proposition

Let ∗ ∈ {pp, ac, sc}*. Then* H∗(*A*) *is invariant for A. Moreover, the spectrum of A* $\upharpoonright_{\mathcal{H}_*(A)}$ *is purely* $*$ *in the sense that, for* $\# \in \{pp, ac, sc\} \setminus \{*\},\$

$$
\mathcal{H}_\# \left(A \!\upharpoonright_{\mathcal{H}_*(A)} \right) = \{0\}.
$$

We write $\sigma_*(\pmb{A}) = \sigma\left(\pmb{A}\!\upharpoonright_{\mathcal{H}_*(\pmb{A})}\right)$. Note that

$$
\sigma(A) = \sigma_{\text{pp}}(A) \cup \sigma_{\text{ac}}(A) \cup \sigma_{\text{sc}}(A),
$$

but $\sigma_{\text{DD}}(A)$, $\sigma_{\text{ac}}(A)$, and $\sigma_{\text{sc}}(A)$ need not be disjoint (as compact subsets of \mathbb{R}).

 Ω

 $(0.11 \times 10^{-1}) \times 10^{-1}$. The set of ± 1