Anderson localization and topological phases

Gian Michele Graf ETH Zurich

Summer School on "Operator Algebras, Spectral Theory, and Applications to Topological Insulators" Tbilisi September 17-21, 2018

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Anderson localization and topological phases

Gian Michele Graf ETH Zurich

Summer School on "Operator Algebras, Spectral Theory, and Applications to Topological Insulators" Tbilisi September 17-21, 2018

based on joint works with A. Elgart, J. Schenker, M. Porta, J. Shapiro; C. Tauber and on discussions with Y. Avron, J. Fröhlich

(ロ) (同) (三) (三) (三) (○) (○)

Outline

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

Time periodic systems

Some physics background first

How it all began: (Integer) Quantum Hall systems

Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

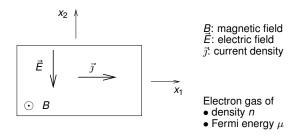
Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

The phenomenon



Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: dissipative conductance, ideally = 0

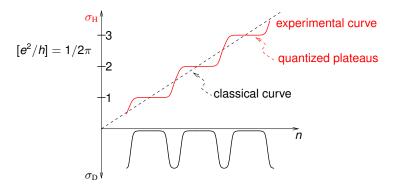
The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}:$ dissipative conductance, ideally = 0



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

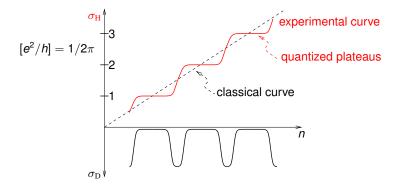
-

The experiment (von Klitzing, 1980) Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



⇒ < ⇒ >

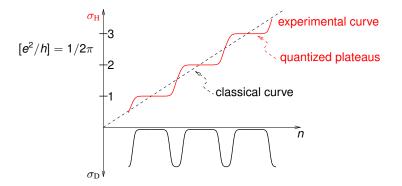
Fractional Quantum Hall effect not discussed

The experiment (von Klitzing, 1980) Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



・ロット (雪) (日) (日)

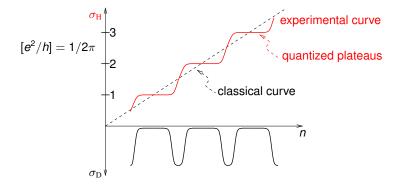
Width of plateaus increases with disorder

The experiment (von Klitzing, 1980) Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

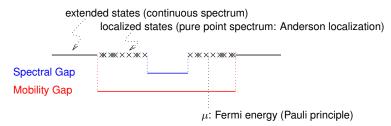
 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



-> < **@**>

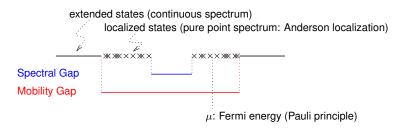
Experiment: $h/e^2 = 25'812.807'4555(59)$ Ohm

The spectrum of a single-particle Hamiltonian



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

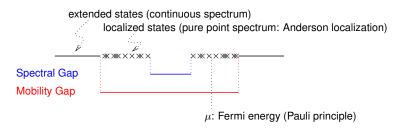
The spectrum of a single-particle Hamiltonian



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(integrated) density of states n(µ) is constant for µ in a Spectral Gap, and strictly increasing otherwise

The spectrum of a single-particle Hamiltonian

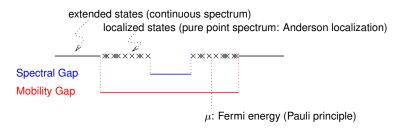


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

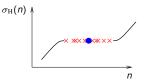
(integrated) density of states n(µ) is constant for µ in a Spectral Gap, and strictly increasing otherwise

► Hall conductance $\sigma_{\rm H}(\mu)$ is constant for μ in a Mobility Gap

The spectrum of a single-particle Hamiltonian



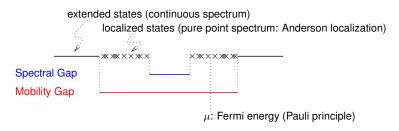
- (integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ► Hall conductance $\sigma_{\rm H}(\mu)$ is constant for μ in a Mobility Gap



Plateaus arise because of a Mobility Gap only!

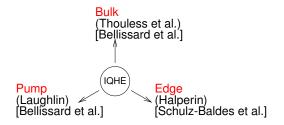
The role of disorder

The spectrum of a single-particle Hamiltonian

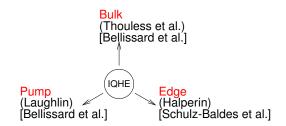


For a periodic (crystalline) medium:

- Method of choice: Bloch theory and vector bundles (Thouless et al.)
- Gap is spectral
- For a disordered medium:
 - Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
 - Fermi energy may lie in a mobility gap (better) or just in a spectral gap



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



Pump:

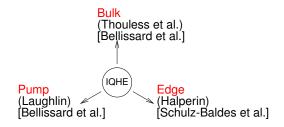
 $2\pi\sigma_{\mathbf{P}} \equiv$ number *n* of electrons pumped from L to R upon increasing the magnetic flux Φ by 2π . (Note: $\Phi \rightsquigarrow \Phi + 2\pi$ implies $H \rightsquigarrow UHU^*$.)

← → A

э.

ヘロア 人間 アメヨア ヘヨア

Quantization: *n* is an integer.

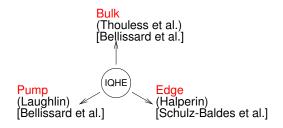


Bulk:

 $\sigma_{\rm B}$ conductivity by Kubo formula: Current density \vec{j} as linear response to an applied (weak) electric field \vec{E} in the bulk.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantization: $2\pi\sigma_B$ is a Chern number.



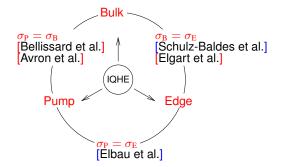
Edge:

 $\sigma_{\rm E}$ conductance: Current carried by edge states per unit voltage, $\sigma_{\rm E} = dl/d\mu$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantization: $2\pi\sigma_E$ is the number of edge channels.

Equivalences of interpretations



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

[]: spectral gap []: mobility gap

Bulk vs. Edge

► (Quantum) Hall as a bulk effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

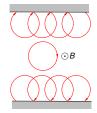
A voltage difference entails an electric field in the bulk

Bulk vs. Edge

(Quantum) Hall as a bulk effect

A voltage difference entails an electric field in the bulk

(Quantum) Hall as an edge effect



A voltage difference entails different Fermi energies of (chiral) edge states at opposite edges

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Notation: χ_{Ω} indicator function of Ω , $\delta_{\partial\Omega}$ delta distribution on $\partial\Omega$, \vec{n} normal vector

Notation: χ_{Ω} indicator function of Ω , $\delta_{\partial\Omega}$ delta distribution on $\partial\Omega$, \vec{n} normal vector

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Note:
$$\vec{\nabla} \chi_{\Omega} = -\vec{n} \delta_{\partial \Omega}$$
, $\vec{E} = -\vec{\nabla} \varphi$

Note:
$$\vec{\nabla}\chi_{\Omega} = -\vec{n}\delta_{\partial\Omega}$$
, $\vec{E} = -\vec{\nabla}\varphi$
 $\vec{j}_{B} = -\chi_{\Omega}\sigma_{B}\varepsilon\vec{E}$ $\vec{j}_{E} = \sigma_{E}(\mu - \varphi)\varepsilon\vec{n}\delta_{\partial\Omega}$
 $= \chi_{\Omega}\sigma_{B}\varepsilon\vec{\nabla}\varphi$ $= -\sigma_{E}(\mu - \varphi)\varepsilon\vec{\nabla}\chi_{\Omega}$
 $\operatorname{div}(\varepsilon\vec{v}) = -\operatorname{curl}\vec{v}$ (= 0 for $\vec{v} = \vec{\nabla}\varphi$)
 $\operatorname{div}\vec{j}_{B} = \sigma_{B}\vec{\nabla}\chi_{\Omega}\cdot\varepsilon\vec{\nabla}\varphi$
 $\operatorname{div}\vec{j}_{E} = \sigma_{E}\vec{\nabla}\varphi\cdot\varepsilon\vec{\nabla}\chi_{\Omega}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Note:
$$\vec{\nabla}\chi_{\Omega} = -\vec{n}\delta_{\partial\Omega}$$
, $\vec{E} = -\vec{\nabla}\varphi$
 $\vec{j}_{B} = -\chi_{\Omega}\sigma_{B}\varepsilon\vec{E}$ $\vec{j}_{E} = \sigma_{E}(\mu - \varphi)\varepsilon\vec{n}\delta_{\partial\Omega}$
 $= \chi_{\Omega}\sigma_{B}\varepsilon\vec{\nabla}\varphi$ $= -\sigma_{E}(\mu - \varphi)\varepsilon\vec{\nabla}\chi_{\Omega}$
 $\operatorname{div}(\varepsilon\vec{v}) = -\operatorname{curl}\vec{v} (= 0 \text{ for } \vec{v} = \vec{\nabla}\varphi)$
 $\operatorname{div}\vec{j}_{B} = \sigma_{B}\vec{\nabla}\chi_{\Omega} \cdot \varepsilon\vec{\nabla}\varphi$
 $\operatorname{div}\vec{j}_{E} = \sigma_{E}\vec{\nabla}\varphi \cdot \varepsilon\vec{\nabla}\chi_{\Omega}$

Thus div $(j_B + j_E) = 0$ implies $\sigma_E = \sigma_B$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Some physics background first

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

 μ

Ē

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)

μ

Ē

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Topological Hamiltonians may be inequivalent. Thus: Classification into classes

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

(日) (日) (日) (日) (日) (日) (日)

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

μ

Ē

(日) (日) (日) (日) (日) (日) (日)

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)
- Integer QHE: $2\pi\sigma_{\rm H} \in \mathbb{Z}$ tells classes apart
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

- Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

Ē

- Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- Analogy: torus \neq sphere (differ by genus)
- Integer QHE: $2\pi\sigma_{\rm H} \in \mathbb{Z}$ tells classes apart
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations. (Classification trivially more restrictive, yet potentially richer: Hamiltonians along deformation may not enjoy symmetry even if endpoints do. Thus finer classes.)

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

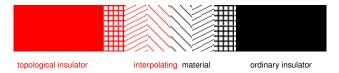
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

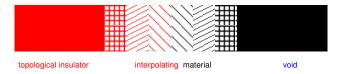
Deformation as interpolation in physical space:



 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Deformation as interpolation in physical space:

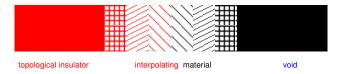


 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ordinary insulator ~> void: Edge states

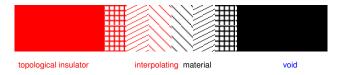
Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~> void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~> void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Topological insulators are insulating in the bulk, but conducting on the surface

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Topological insulators are insulating in the bulk, but conducting on the surface
- When breaking them, the newly created surfaces are conducting

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

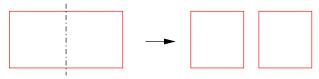
In a nutshell: Termination of bulk of a topological insulator implies edge states

- Topological insulators are insulating in the bulk, but conducting on the surface
- > When breaking them, the newly created surfaces are conducting

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Topological insulators are insulating in the bulk, but conducting on the surface
- When breaking them, the newly created surfaces are conducting



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Notation for symmetries:

- ▶ Θ (time-reversal): antiunitary, $H\Theta = \Theta H$, $\Theta^2 = \pm 1$
- ► Σ (charge-conjugation): antiunitary, $H\Sigma = -\Sigma H$, $\Sigma^2 = \pm 1$

 $\blacktriangleright \Pi = \Theta \Sigma = \Sigma \Theta$: unitary

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	Z
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

By now: Non-commutative (bulk) index formulae have been found in all cases (Prodan, Schulz-Baldes)

Special cases to be considered

Sy	d										
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	Z
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

... and one more

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

Various approaches to the QHE

- Landau Hamiltonians (not discussed)
- Periodic Hamiltonians (Thouless et al.)
- The role of disorder and non-commutative geometry
- Effective field theories (important, but not discussed; Fröhlich et al.)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

• be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory).

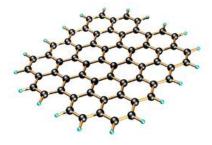
< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

- be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory). Setting:
- Plane: lattice $\Gamma \ni x = (x_1, x_2)$, e.g. $\Gamma = \mathbb{Z}^2$

Single-particle Hamiltonian H_B : operator on $\ell^2(\Gamma)$ with $H_B(x', x)$ of short range in |x - x'| (tight binding model).



Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

• be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory). Setting:

Plane: lattice $\Gamma \ni x = (x_1, x_2)$, e.g. $\Gamma = \mathbb{Z}^2$

Single-particle Hamiltonian H_B : operator on $\ell^2(\Gamma)$ with $H_B(x', x)$ of short range in |x - x'| (tight binding model).

- apply to infinite systems (thermodynamic limit)
- preferably, be compatible with disorder: Fermi energy μ lies in a Mobility Gap (as opposed to a Spectral Gap).

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{x'} \mathrm{e}^{-arepsilon |x'|} \sum_{x} \mathrm{e}^{
u |x-x'|} |\mathcal{P}_{\mu}(x,x')| < \infty$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

(some $\nu > 0$, all $\varepsilon > 0$)

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{\mathbf{x}'} \mathrm{e}^{-\varepsilon|\mathbf{x}'|} \sum_{\mathbf{x}} \mathrm{e}^{\nu|\mathbf{x}-\mathbf{x}'|} |\mathcal{P}_{\mu}(\mathbf{x},\mathbf{x}')| < \infty$$

(some $\nu > 0$, all $\varepsilon > 0$)

- Trivially true for H_B a multiplication operator in position space
- ▶ Trivially false for H_B a function of momentum ($P_\mu(x,0) \sim |x|^{-d}$)
- Proven in (virtually) all cases where localization is known.

DL of a random Schrödinger operator H_{ω} , ($\omega \in \Omega$) in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}ig(\sup_{oldsymbol{g}\in oldsymbol{B}_1(\Delta)}|\langle x|oldsymbol{g}(oldsymbol{H}_\omega)|x'
angleig)\leq C\mathrm{e}^{-2
u|x-x'|}$$

where

 $B_1(\Delta) = \{g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \le 1, g \text{ constant on } \lambda \gtrless \Delta\}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

DL of a random Schrödinger operator H_{ω} , ($\omega \in \Omega$) in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}ig(\sup_{g\in B_1(\Delta)}|\langle x|g(H_\omega)|x'
angle|ig)\leq C\mathrm{e}^{-2
u|x-x'|}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where

$$\begin{split} B_1(\Delta) &= \{g: \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \leq 1, g \text{ constant on } \lambda \gtrless \Delta \} \\ \text{Let } g(\lambda) &= e^{-\mathrm{i}t\lambda} E_{\Delta}(\lambda) \; (\in B_1(\Delta)) \text{ for } t \in \mathbb{R}. \text{ By DL} \\ &\qquad \mathbb{E} \bigl(\sup_{t \in \mathbb{R}} |\langle x| e^{-\mathrm{i}tH_\omega} E_{\Delta}(H_\omega) | x' \rangle | \bigr) \leq C e^{-2\nu |x-x'|} \end{split}$$

DL of a random Schrödinger operator H_{ω} , ($\omega \in \Omega$) in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}ig(\sup_{g\in B_1(\Delta)}|\langle x|g(H_\omega)|x'
angle|ig)\leq C\mathrm{e}^{-2
u|x-x'|}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where

$$egin{aligned} &B_1(\Delta) = \{g:\mathbb{R} o \mathbb{C} \mid |g(\lambda)| \leq 1, g ext{ constant on } \lambda \gtrless \Delta \} \ & ext{Let } g(\lambda) = ext{e}^{- ext{i}t\lambda} E_\Delta(\lambda) \ (\in B_1(\Delta)) ext{ for } t \in \mathbb{R}. ext{ By DL} \ & ext{} \mathbb{E}ig(\sup_{t\in\mathbb{R}} |\langle x| ext{e}^{- ext{i}t extsf{H}_\omega} E_\Delta(extsf{H}_\omega)|x'
angle|ig) \leq C ext{e}^{-2
u|x-x'|} \end{aligned}$$

- explains name "DL"
- implies spectral localization

DL of a random Schrödinger operator H_{ω} , ($\omega \in \Omega$) in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}ig(\sup_{oldsymbol{g}\in B_1(\Delta)}|\langle x|oldsymbol{g}(H_\omega)|x'
angleig)\leq C\mathrm{e}^{-2
u|x-x'|}$$

where

$$B_1(\Delta) = \{g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \le 1, g \text{ constant on } \lambda \gtrless \Delta\}$$

Let
$$g(\lambda) = E_{(-\infty,\mu)}(\lambda)$$
, i.e. $g(H_{\omega}) = P_{\mu}(H_{\omega}) \equiv P_{\mu,\omega}$. By DL, for any
 $\varepsilon > 0$
 $\mathbb{E}(\sum_{x,x' \in \mathbb{Z}^d} |\langle x|P_{\mu,\omega}|x'\rangle|e^{\nu|x-x'|}e^{-\varepsilon|x'|}) \le C < +\infty$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

DL of a random Schrödinger operator H_{ω} , ($\omega \in \Omega$) in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}ig(\sup_{g\in \mathcal{B}_1(\Delta)}|\langle x|g(\mathcal{H}_\omega)|x'
angle|ig)\leq C\mathrm{e}^{-2
u|x-x'|}$$

where

$$\begin{split} B_1(\Delta) &= \{ g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \leq 1, g \text{ constant on } \lambda \gtrless \Delta \} \\ \text{Let } g(\lambda) &= E_{(-\infty,\mu)}(\lambda), \text{ i.e. } g(H_\omega) = P_{\mu}(H_\omega) \equiv P_{\mu,\omega}. \text{ By DL, for any} \\ \varepsilon &> 0 \\ \mathbb{E} \big(\sum_{x,x' \in \mathbb{Z}^d} |\langle x| P_{\mu,\omega} | x' \rangle |e^{\nu |x-x'|} e^{-\varepsilon |x'|} \big) \leq C < +\infty \end{split}$$

In particular (drop \mathbb{E} , $\sum_{x'}$)

$$\mathrm{e}^{-arepsilon|\mathbf{x}'|}\sum_{\mathbf{x}}|\langle \mathbf{x}|\mathbf{\mathcal{P}}_{\mu,\omega}|\mathbf{x}'
angle|\mathrm{e}^{
u|\mathbf{x}-\mathbf{x}'|}\leq \mathbf{\mathcal{C}}_{\omega}<+\infty$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

 $(\psi, X\psi)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

 $(\psi, X\psi)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Rate of change of *X*?

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

 $(\psi, X\psi)$

Rate of change of *X*?

i[*H*, *X*]

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

 $(\psi, X\psi)$

Rate of change of *X*?

i[*H*, *X*]

Because evolution is $\psi \mapsto e^{-iHt}\psi$, so

$$\frac{d}{dt}(e^{-iHt}\psi, Xe^{-iHt}\psi)\big|_{t=0} = (\psi, i[H, X]\psi)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Aside: Poor man's second quantization for fermions

Single particle Hilbert space $\mathcal{H} \in \psi$

Aside: Poor man's second quantization for fermions Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state *S* has single-particle marginal ("density matrix") ρ : operator on \mathcal{H}

$$\rho = \rho^* \,, \qquad \mathbf{0} \le \rho \le \mathbf{1}$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, $((\psi, \psi) = 1)$ in the state *S* as

$$(\psi, \rho\psi) = tr(\boldsymbol{P}\rho) \quad (\in [0, 1])$$

(ロ) (同) (三) (三) (三) (○) (○)

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

Aside: Poor man's second quantization for fermions Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state *S* has single-particle marginal ("density matrix") ρ : operator on \mathcal{H}

$$\rho = \rho^* \,, \qquad \mathbf{0} \le \rho \le \mathbf{1}$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, $((\psi, \psi) = 1)$ in the state *S* as

$$(\psi, \rho\psi) = \operatorname{tr}(P\rho) \quad (\in [0, 1])$$

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

 $X = X^*$ single particle observable with spectral decomposition $X = \sum_i x_i P_i$.

Aside: Poor man's second quantization for fermions Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state *S* has single-particle marginal ("density matrix") ρ : operator on \mathcal{H}

$$\rho = \rho^* \,, \qquad \mathbf{0} \le \rho \le \mathbf{1}$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, $((\psi, \psi) = 1)$ in the state *S* as

$$(\psi, \rho\psi) = \operatorname{tr}(P\rho) \quad (\in [0, 1])$$

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

 $X = X^*$ single particle observable with spectral decomposition $X = \sum_i x_i P_i$.

Expectation value in S:

$$\sum_{i} x_i \operatorname{tr}(P_i \rho) = \operatorname{tr}(X \rho)$$

(日) (日) (日) (日) (日) (日) (日)

Aside: Gauge transformations (Units $e = \hbar = c = 1$)

Electromagnetic(e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{E} = -ec{
abla} arphi - \partial ec{A} / \partial t \,, \quad ec{B} = {
m curl}\, ec{A}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Aside: Gauge transformations (Units $e = \hbar = c = 1$)

Electromagnetic(e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{m{B}} = -ec{
abla} arphi - \partial ec{m{A}} / \partial t \,, \quad ec{m{B}} = {
m curl}\,ec{m{A}}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

leave \vec{E} , \vec{B} invariant.

Aside: Gauge transformations (Units $e = \hbar = c = 1$)

Electromagnetic(e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{m{B}} = -ec{
abla} arphi - \partial ec{m{A}} / \partial t \,, \quad ec{m{B}} = {
m curl}\,ec{m{A}}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

Generic Hamiltonian for particle in \mathbb{R}^3 : Operator on $L^2(\mathbb{R}^3)$ given as

$$H = \frac{\vec{p}^2}{2m} + V(\vec{x}), \qquad (\vec{p} = -i\nabla)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Aside: Gauge transformations (Units $e = \hbar = c = 1$)

Electromagnetic(e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{m{B}} = -ec{
abla} arphi - \partial ec{m{A}} / \partial t \,, \quad ec{m{B}} = {
m curl}\,ec{m{A}}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

Generic Hamiltonian for particle in \mathbb{R}^3 : Operator on $L^2(\mathbb{R}^3)$ given as

$$H = \frac{\vec{p}^2}{2m} + V(\vec{x}), \qquad (\vec{p} = -i\nabla)$$

For charged particle in e.m. field

$$H=\frac{1}{2m}(\vec{p}-\vec{A})^2+\varphi$$

Aside: Gauge transformations (Units $e = \hbar = c = 1$)

Electromagnetic(e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{m{B}} = -ec{
abla} arphi - \partial ec{m{A}} / \partial t \,, \quad ec{m{B}} = {
m curl}\,ec{m{A}}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi\mapsto\varphi'=\varphi-\partial\chi/\partial t\,,\quad \vec{\pmb{A}}\mapsto\vec{\pmb{A}}'=\vec{\pmb{A}}+\vec{\nabla}\chi$$

leave \vec{E} , \vec{B} invariant.

For charged particle in e.m. field

$$H=rac{1}{2m}(ec{
ho}-ec{A})^2+arphi$$

Time-independent gauge transformations are realized as unitaries $U: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3), \psi \mapsto e^{i\chi}\psi$

$$H \mapsto UHU^* = e^{i\chi}He^{-i\chi} = H'$$

(by $\mathrm{e}^{\mathrm{i}\chi}(ec{
ho}-ec{A})\mathrm{e}^{-\mathrm{i}\chi}=ec{
ho}-ec{A}')$

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

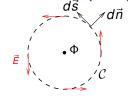
An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

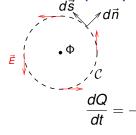
Definitions and results Some numerics The anomalous phase

IQHE as a pump: Flux insertion



Flux increase from 0 to Φ Charge *Q* traversing *C* inwards

IQHE as a pump: Flux insertion



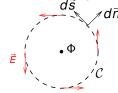
Flux increase from 0 to Φ Charge *Q* traversing *C* inwards

A D > A P > A D > A D >

э

$$\frac{dQ}{dt} = -\oint_{\mathcal{C}} \vec{j} \cdot d\vec{n} = -\sigma_{\rm H} \oint_{\mathcal{C}} \vec{E} \cdot d\vec{s} = \sigma_{\rm H} \frac{d\Phi}{dt}$$
$$Q = \sigma_{\rm H} \Phi$$

IQHE as a pump: Flux insertion



Flux increase from 0 to Φ Charge *Q* traversing *C* inwards

 $Q = \sigma_{\rm H} \Phi$

Flux Φ generated by a gauge potential \vec{A} :

$$\oint_{\mathcal{C}} \vec{A} \cdot d\vec{s} = \Phi, \text{ e.g. } \vec{A} = \vec{\nabla} \big(\frac{\Phi}{2\pi} \arg \vec{x} \big) \equiv \vec{\nabla} \chi$$

If $\chi(\vec{x})$ were single-valued:

gauge
$$\vec{A} = 0$$
 equiv. to $\vec{A} = \vec{\nabla}\chi$
 \downarrow \downarrow \downarrow
Hamiltonian H_B UH_BU^*

with $U = e^{i\chi}$, unitary. For $\Phi = 2\pi$, U is single-valued, though $\chi(\vec{x}) = \arg \vec{x}$ is not.

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of H_B ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of UH_BU^* ($\Phi = 2\pi$): $UP_{\mu}U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^{*}$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 "dim $ilde{U}P_{\mu} ilde{U}^{*}$ – dim $UP_{\mu}U^{*}$ " = $\infty-\infty$

(dim P = dim Ran P). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi = 2\pi$, resp. in equilibrium at $\Phi = 2\pi$.

(日) (日) (日) (日) (日) (日) (日)

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of H_B ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of UH_BU^* ($\Phi = 2\pi$): $UP_{\mu}U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^{*}$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 "dim $ilde{U}P_{\mu} ilde{U}^{*}$ – dim $UP_{\mu}U^{*}$ " = $\infty-\infty$

(dim P = dim Ran P). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi = 2\pi$, resp. in equilibrium at $\Phi = 2\pi$.

Rightly interpreted, it is an integer.

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of H_B ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of UH_BU^* ($\Phi = 2\pi$): $UP_{\mu}U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^{*}$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 "dim $ilde{U}P_{\mu} ilde{U}^{*}$ – dim $UP_{\mu}U^{*}$ " = $\infty-\infty$

(dim P = dim Ran P). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi = 2\pi$, resp. in equilibrium at $\Phi = 2\pi$.

Rightly interpreted, it is an integer. Hence

$$2\pi\sigma_{
m P} =$$
 "dim P_{μ} – dim $UP_{\mu}U^{*}$ "

since \tilde{U} is connected to 1 (unlike U)

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections *P*, *Q* defined by filled dots $n \in \mathbb{Z}$.

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections *P*, *Q* defined by filled dots $n \in \mathbb{Z}$.

Generalizations of dim P – dim Q:

tr(P-Q)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

since tr $P = \dim P$

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections *P*, *Q* defined by filled dots $n \in \mathbb{Z}$.

Generalizations of dim P – dim Q:

tr(P-Q)

since tr $P = \dim P$. More generally: **Definition.** The Index of a pair of projections is

$$\begin{split} \mathsf{Ind}(\pmb{P},\pmb{Q}) &= \mathsf{dim}\{\psi\in\mathcal{H}\mid \pmb{P}\psi=\psi, \pmb{Q}\psi=\pmb{0}\} + \\ &-\mathsf{dim}\{\psi\in\mathcal{H}\mid \pmb{Q}\psi=\psi, \pmb{P}\psi=\pmb{0}\} \end{split}$$

(if dimensions finite)

Remarks. (i) In the example, both generalizations = 1. (ii) In the IQHE only the index is well-defined

Properties of the Index

- Additivity: Ind(P, Q) = Ind(P, R) + Ind(R, Q)
- Stability: $||P Q|| < 1 \Rightarrow Ind(P, Q) = 0$

$$\operatorname{Ind}(P,Q) = \operatorname{tr}(P-Q)^{2n+1}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

if $P - Q \in \mathcal{J}_{2n+1}$ (trace ideals).

Properties of the Index

Stability:
$$||P - Q|| < 1 \Rightarrow Ind(P, Q) = 0$$

$$\operatorname{Ind}(P,Q) = \operatorname{tr}(P-Q)^{2n+1}$$

if $P - Q \in \mathcal{J}_{2n+1}$ (trace ideals).

Remarks. (i) $Ind(P, Q) = \dim P - \dim Q$ (finite-dimensional case) (ii) $tr(P - Q)^3 = tr(P - Q)$ if $P - Q \in \mathcal{J}_1$; because

$$(P-Q) - (P-Q)^3 = [PQ, [Q, P-Q]]$$

$$AB, BA \in \mathcal{J}_1 \Rightarrow tr[A, B] = 0$$

(iii) Ind(P, Q) = ind(QP) as a map on ran $P \rightarrow ran Q$

Properties of the Index

- Additivity: Ind(P, Q) = Ind(P, R) + Ind(R, Q)
- Stability: $||P Q|| < 1 \Rightarrow Ind(P, Q) = 0$

$$\operatorname{Ind}(P,Q) = \operatorname{tr}(P-Q)^{2n+1}$$

if $P - Q \in \mathcal{J}_{2n+1}$ (trace ideals).

Remarks. (i) $Ind(P, Q) = \dim P - \dim Q$ (finite-dimensional case) (ii) $tr(P - Q)^3 = tr(P - Q)$ if $P - Q \in \mathcal{J}_1$; because

$$(P-Q)-(P-Q)^3=[PQ,[Q,P-Q]]$$

$$AB, BA \in \mathcal{J}_1 \Rightarrow tr[A, B] = 0$$

(iv) If the unitary *U* has an eigenbasis and $P - UPU^* \in \mathcal{J}_1$, then tr($P - UPU^*$) = 0. In fact, by $U\psi_n = u_n\psi_n$

$$(\psi_n, (P - UPU^*)\psi_n) = (1 - |u_n|^2)(\psi_n, P\psi_n) = 0$$

IQHE as a pump: Definition of $\sigma_{\rm P}$

Definition.

 $2\pi\sigma_{\rm P} = \mathsf{Ind}(P_{\mu}, UP_{\mu}U^*)$ $= \mathsf{tr}(P_{\mu} - UP_{\mu}U^*)^3$

(Bellissard) (Avron et al.)

A D F A 同 F A E F A E F A Q A

where $U = \arg \vec{x} = z/|z|$.

Remarks. (i) Is a (stable) integer, whenever defined. (ii) $P_{\mu} - UP_{\mu}U^* \notin \mathcal{J}_1$.

IQHE as a Bulk effect

Example: Cyclotron orbit drifting under a electric field \vec{E}

General: Hamiltonian H_B in the plane. Kubo formula (linear response to \vec{E})

$$\sigma_{\mathrm{B}}=\mathrm{i}\,\mathsf{tr}\, \textit{P}_{\mu}ig[\textit{P}_{\mu}, \Lambda_{1}], [\textit{P}_{\mu}, \Lambda_{2}]ig]$$

where

$$P_{\mu} = E_{(-\infty,\mu)}(H_B)$$
 Fermi projection,
 $\Lambda_i = \Lambda(x_i), (i = 1, 2)$ switches

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

 $\sigma_{\mathrm{B}} = \mathrm{i}\,\mathrm{tr}\, \textit{P}_{\mu}ig[\textit{P}_{\mu},\Lambda_{1}],\textit{P}_{\mu},\Lambda_{2}]ig]$

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\rm B} = -\frac{\mathrm{i}}{(2\pi)^2} \int_{\mathbb{T}} d^2 k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where \mathbb{T} : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$

Remarks.

$$2\pi\sigma_{\rm B}={\rm ch}(E)$$

the Chern number of the vector bundle *E* over \mathbb{T} and fiber range P(k) (see later)

IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

 $\sigma_{\mathrm{B}} = \mathrm{i}\,\mathrm{tr}\, \textit{P}_{\mu}ig[\textit{P}_{\mu},\Lambda_{1}],\textit{P}_{\mu},\Lambda_{2}]ig]$

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\rm B} = -\frac{\mathrm{i}}{(2\pi)^2} \int_{\mathbb{T}} d^2 k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where \mathbb{T} : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$

Remarks.

$$2\pi\sigma_{\rm B}={\rm ch}(E)$$

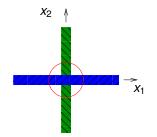
the Chern number of the vector bundle *E* over \mathbb{T} and fiber range P(k) (see later)

Alternative treatment of disorder (Thouless): Large, but finite system (square); $(k_1, k_2) \rightsquigarrow (\varphi_1, \varphi_2)$ phase slips in boundary conditions

IQHE as a Bulk effect (remarks)

 $\sigma_{\rm B} = {\rm i}\,{\rm tr} {\pmb P}_{\mu}\big[[{\pmb P}_{\mu}, {\pmb \Lambda}_1], [{\pmb P}_{\mu}, {\pmb \Lambda}_2]\big]$

where $\Lambda_i = \Lambda(x_i)$, (i = 1, 2) switches. Supports of $\nabla \Lambda_i$:



Recall Kubo: $j_1 = -\sigma_B E_2$

Remarks. (i) Λ_1 , Λ_2 : where from? Current operator across $x_1 = 0$: i[H_B , Λ_1]; field $\vec{E} = -\vec{\nabla}\Lambda_2$

(ii) The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

Theorem: Quantization and equivalence

Definition. Ergodic operators H_{ω} , ($\omega \in \Omega$: probability space): actions of (magnetic) \mathbb{Z}^2 -translations on Ω and on $\ell^2(\mathbb{Z}^2)$ compatible.

Theorem [Index= 2π Kubo] (Bellissard, van Elst, Schulz-Baldes) If μ lies in a Mobility Gap, then $\sigma_D(\mu) = 0$ and $2\pi\sigma_P(\mu) = 2\pi\sigma_B(\mu)$ is an integer and constant.

(ロ) (同) (三) (三) (三) (○) (○)

Proof by non-commutative geometry.

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_{\rm P} = 2\pi\sigma_{\rm B}$, i.e.

$$\operatorname{tr}(P_{\mu} - UP_{\mu}U^{*})^{3} = 2\pi \mathrm{i} \operatorname{tr} P_{\mu}[[P_{\mu}, \Lambda_{1}], [P_{\mu}, \Lambda_{2}]]$$

Remark. No ergodic setting.

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_{\rm P} = 2\pi\sigma_{\rm B}$, i.e.

$$\operatorname{tr}(P_{\mu} - UP_{\mu}U^*)^3 = 2\pi \mathrm{i} \operatorname{tr} P_{\mu}[[P_{\mu}, \Lambda_1], [P_{\mu}, \Lambda_2]]$$

Explicitely,

$$2i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) S(x,y,z) = \\-2\pi i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x))(\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)]$$

where

$$S(x, y, z) = -\frac{\mathrm{i}}{2} \left(1 - \frac{U(x)}{U(y)} \right) \left(1 - \frac{U(y)}{U(z)} \right) \left(1 - \frac{U(z)}{U(x)} \right)$$
$$= \sin \angle (x, 0, y) + \sin \angle (y, 0, z) + \sin \angle (z, 0, x)$$

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_{\rm P} = 2\pi\sigma_{\rm B}$, i.e.

$$\operatorname{tr}(P_{\mu} - UP_{\mu}U^{*})^{3} = 2\pi \mathrm{i} \operatorname{tr} P_{\mu}[[P_{\mu}, \Lambda_{1}], [P_{\mu}, \Lambda_{2}]]$$

Explicitely,

$$2i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) S(x,y,z) = -2\pi i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x))(\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)]$$

where

$$S(x, y, z) = -\frac{i}{2} \left(1 - \frac{U(x)}{U(y)} \right) \left(1 - \frac{U(y)}{U(z)} \right) \left(1 - \frac{U(z)}{U(x)} \right)$$
$$= \sin \angle (x, 0, y) + \sin \angle (y, 0, z) + \sin \angle (z, 0, x)$$

Remark. Mobility gap: Substantial contribution only when x, y, z all near 0.

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

(ロ) (同) (三) (三) (三) (○) (○)

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Average both sides over $p \in C_L$ (cube of side *L*):

$$L^{-2}\int_{p\in C_L}d^2p$$

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side *L*):

$$L^{-2}\int_{\rho\in C_L} d^2p \sum_{x\in\mathbb{Z}^2} \sim L^{-2}\int_{\rho\in\mathbb{R}^2} d^2p \sum_{x\in\mathbb{Z}^2\cap C_L}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(by mobility gap) for L large

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side *L*):

$$L^{-2} \int_{\rho \in \mathcal{C}_L} d^2 p \sum_{x \in \mathbb{Z}^2} \sim L^{-2} \int_{\rho \in \mathbb{R}^2} d^2 p \sum_{x \in \mathbb{Z}^2 \cap \mathcal{C}_L}$$

• ($p, y, x \in \mathbb{R}$)

$$\int dp(\Lambda(y-p)-\Lambda(x-p))=y-x$$

because = f(y - x), f(0) = 0 and $f'(y - x) = \int_{\Box} dp \bigwedge_{A \to C} (y - p) = 1$.

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side *L*):

$$L^{-2}\int_{p\in C_L} d^2p \sum_{x\in\mathbb{Z}^2} \sim L^{-2}\int_{p\in\mathbb{R}^2} d^2p \sum_{x\in\mathbb{Z}^2\cap C_L}$$

• On r.h.s. use

$$\int dp_1 dp_2 (\Lambda(y_1 - p_1) - \Lambda(x_1 - p_1)) (\Lambda(z_2 - p_2) - \Lambda(y_2 - p_2)) - (1 \leftrightarrow 2)$$
$$= (y_1 - x_1)(z_2 - y_2) - (1 \leftrightarrow 2) = 2 \operatorname{Area}(x, y, z)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sketch of proof (continued) The claim

$$2i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) S(x,y,z) = -2\pi i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x))(\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)]$$

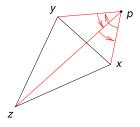
reduces by the above to

$$\int d^2 p(\sin \angle (x,p,y) + \sin \angle (y,p,z) + \sin \angle (z,p,x)) = 2\pi \operatorname{Area}(x,y,z)$$

Sketch of proof (continued)

$$\int d^2 p(\sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)) = 2\pi \operatorname{Area}(x, y, z)$$

(Connes' triangle formula)

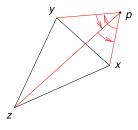


▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Sketch of proof (continued)

$$\int d^2 p(\sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)) = 2\pi \operatorname{Area}(x, y, z)$$

(Connes' triangle formula)



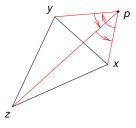
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof: Observation (Colin de Verdière)Drop sin: obvious.

Sketch of proof (continued)

$$\int d^2 p(\sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)) = 2\pi \operatorname{Area}(x, y, z)$$

(Connes' triangle formula)



Proof: Observation (Colin de Verdière)

- Drop sin: obvious.
- Let f be odd with $f(t) t = O(t^3)$, $(t \to 0)$; e.g. f = sin. Then

$$\int d^2 p(f(\angle(x,p,y)) - \angle(x,p,y)) = 0$$

by (i) integrand $0(|p|^{-3}), (p \to \infty)$ and (ii) reflection symmetry.

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane inde× Rueda de casino

Chiral systems

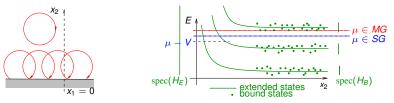
An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

IQHE as an edge effect



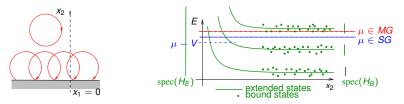
Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

IQHE as an edge effect



Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

Current operator across $x_1 = 0$: i[H_E , Λ_1]

$$I = i \operatorname{tr}(\rho(H_E + V) - \rho(H_E))[H_E, \Lambda_1]$$

As $V \rightarrow 0$: $I/V \rightarrow \sigma_E$

 $\sigma_{\rm E} = {\rm i} \, {\rm tr}(\rho'(H_E)[H_E, \Lambda_1])$

・ コット (雪) (小田) (コット 日)

Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a Spectral Gap of H_B , then

 $\sigma_{\rm E} = \sigma_{\rm B}$.

In particular, $\sigma_{\rm E}$ does not depend on ρ' , nor on boundary conditions.

(ロ) (同) (三) (三) (三) (○) (○)

What about the case of a Mobility Gap?

 $\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$

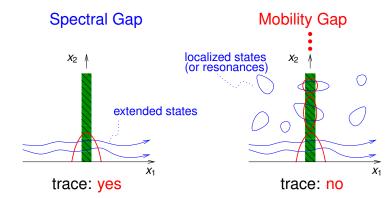
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

well-defined? (Here, switches Λ_i (*i* = 1, 2) with flipped orientations)

What about the case of a Mobility Gap?

$$\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

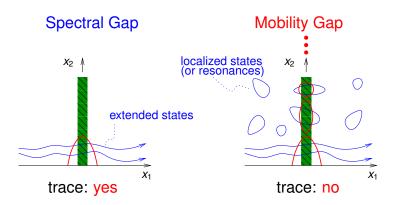
well-defined?



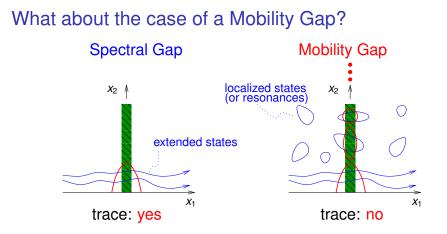
 \therefore the definition of $\sigma_{\rm E}$ needs to be changed in case of a Mobility Gap!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What about the case of a Mobility Gap?



: the definition of σ_E needs to be changed in case of a Mobility Gap! Guiding principle: Localized states should not contribute to the edge current



 \therefore the definition of $\sigma_{\rm E}$ needs to be changed in case of a Mobility Gap!

Analogy: Electrodynamics of continuous media

$$\vec{j} = \vec{j}_F + \vec{j}_M \equiv \text{free} + \text{molecular currents}$$
 $\vec{j}_M = \text{curl } \vec{M}$

Localized states should not contribute to the (free) edge current

Equality of conductances

For a so amended definition of $\sigma_{\rm E}$:

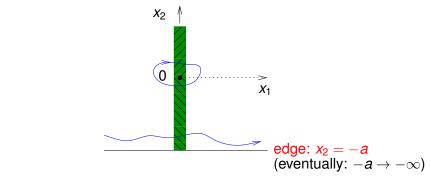
Theorem (Elgart, G., Schenker). If supp ρ' lies in a Mobility Gap, then

 $\sigma_{\rm E} = \sigma_{\rm B}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In particular $\sigma_{\rm E}$ does not depend on ρ' , nor on boundary conditions.

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap Replace H_E to H_a (a > 0) as follows

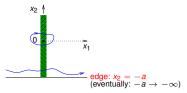


• Current across the portion of $x_1 = 0$:

 $-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$ (exists!)

Current across the portion ::

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap Replace H_E to H_a (a > 0) as follows



• Current across the portion \mathbf{M} of $x_1 = 0$:

 $-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$ (exists!)

► Current across the portion **a**: In the limit $\mathbf{a} \to \infty$ pretend that $\rho'(H_a) \rightsquigarrow \rho'(H_B) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$

(sum over eigenvalues λ of H_B : $H_B\psi_{\lambda} = \lambda\psi_{\lambda}$)

$$(\psi_{\lambda}, [H_{\mathcal{B}}, \Lambda_1](1 - \Lambda_2)\psi_{\lambda}) = -(\psi_{\lambda}, [H_{\mathcal{B}}, \Lambda_1]\Lambda_2\psi_{\lambda})$$

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap Replace H_E to H_a (a > 0) as follows

• Current across the portion of $x_1 = 0$:

 $-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$ (exists!)

• Current across the portion \mathbb{Z} : In the limit $a \to \infty$ pretend that

$$\rho'(H_{a}) \rightsquigarrow \rho'(H_{B}) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$$

(sum over eigenvalues λ of H_B : $H_B\psi_{\lambda} = \lambda\psi_{\lambda}$)

$$(\psi_{\lambda}, [H_{B}, \Lambda_{1}](1 - \Lambda_{2})\psi_{\lambda}) = -(\psi_{\lambda}, [H_{B}, \Lambda_{1}]\Lambda_{2}\psi_{\lambda})$$

Together:

$$\sigma_{\rm E} = \lim_{a \to \infty} -i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2) + i \sum_{\lambda} \rho'(\lambda)(\psi_{\lambda}, [H_B, \Lambda_1]\Lambda_2\psi_{\lambda})$$

Magnetization Question? What is the term

 $i(\psi_{\lambda}, [H_B, \Lambda_1]\Lambda_2\psi_{\lambda})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Magnetization Question? What is the term

 $i(\psi_{\lambda}, [H_B, \Lambda_1]\Lambda_2\psi_{\lambda})$?

Or better after hermitization of $i[H_B, \Lambda_1]\Lambda_2$, i.e.

$$\frac{i}{2}([H_B,\Lambda_1]\Lambda_2 - \Lambda_2[\Lambda_1,H_B]) = \frac{i}{2}[H_B,\Lambda_1\Lambda_2] - \frac{i}{2}(\Lambda_1H_B\Lambda_2 - \Lambda_2H_B\Lambda_1)$$

where we get

$$-rac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})?$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Magnetization

· .

Question? What is the term

$$-\frac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})?$$

Answer: Replacement $x_i \rightsquigarrow \Lambda_i$, (i = 1, 2) signifies extensive \rightsquigarrow intensive. Thus

$$m=\frac{1}{2}\vec{x}\wedge\dot{\vec{x}}\rightsquigarrow M=\frac{1}{2}(\Lambda_1\dot{\Lambda}_2-\Lambda_2\dot{\Lambda}_1)$$

signifies "magnetic moment \rightsquigarrow magnetization". So, by $\dot{\Lambda}_i = i[H_B, \Lambda_i]$,

$$M=\frac{1}{2}(\Lambda_1H_B\Lambda_2-\Lambda_2H_B\Lambda_1)$$

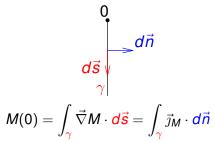
$$-\frac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})=-(\psi_{\lambda},M\psi_{\lambda})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Magnetization (alternate)

Magnetization current: $\vec{\jmath}_M = \operatorname{curl} M = -\varepsilon \vec{\nabla} M$

 Classically: Magnetization is current across Dirac string γ (dn = εds)

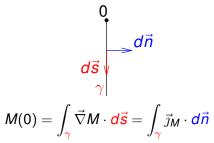


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Magnetization (alternate)

Magnetization current: $\vec{\jmath}_M = \operatorname{curl} M = -\varepsilon \vec{\nabla} M$

 Classically: Magnetization is current across Dirac string γ (dn = εds)



Quantum:

$$M(0) = -\mathrm{i}[H_B, \Lambda_1]\Lambda_2$$

Then hermitize

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting Bloch bundles and Chern numbers

Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$

- ▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$
- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L

(ロ) (同) (三) (三) (三) (○) (○)

- ▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$
- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters

$$\chi(n_1+n_2)=\chi(n_1)\chi(n_2)$$

(日) (日) (日) (日) (日) (日) (日)

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters

$$\chi(n_1+n_2)=\chi(n_1)\chi(n_2)$$

viewed as 2-torus T (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

(日) (日) (日) (日) (日) (日) (日)

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- Dual group L^{*} ∋ k = (k₁, k₂): group of characters viewed as 2-torus T (Brillouin zone)

$$n\mapsto \chi(n)=\mathrm{e}^{-\mathrm{i}k\cdot n},\qquad k\in\mathbb{T}=(\mathbb{R}/2\pi\mathbb{Z})^2$$

(日) (日) (日) (日) (日) (日) (日)

• Hilbert space $\mathcal{H} = L^2(X)$

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x → T_nx. Unit cell C = X/L
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n\mapsto \chi(n)=\mathrm{e}^{-\mathrm{i}k\cdot n},\qquad k\in\mathbb{T}=(\mathbb{R}/2\pi\mathbb{Z})^2$$

(日) (日) (日) (日) (日) (日) (日)

► Hilbert space H = L²(X) (variant: may be tensored by ⊗C^N: internal d.o.f. (spin, ...))

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

▶ Hilbert space $\mathcal{H} = L^2(X)$ carrying representation U_n of \mathcal{L}

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

Hilbert space H = L²(X) carrying representation U_n of L
 Decomposition of Hilbert space and of states

$$\begin{split} \mathcal{H} &\cong \int_{\mathbb{T}}^{\oplus} \mathfrak{h} \, d^2 k \equiv L^2(\mathbb{T}, \mathfrak{h}), \qquad \mathfrak{h} = L^2(\mathcal{C}) \\ \psi(x) &= \int_{\mathbb{T}} \psi_k(x) d^2 k, \qquad \psi \longleftrightarrow (\psi_k)_{k \in \mathbb{T}} \end{split}$$

by reduction of the representation

$$(U_n\psi)(x) = \int_{\mathbb{T}} \psi_k(x) \mathrm{e}^{-\mathrm{i}k\cdot n} d^2k$$

- Abelian group L ≃ Z² ∋ n = (n₁, n₂) of lattice translations acting on X: x ↦ T_nx. Unit cell C = X/L
- Dual group L^{*} ∋ k = (k₁, k₂): group of characters viewed as 2-torus T (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

Hilbert space H = L²(X) carrying representation U_n of L
 Decomposition of Hilbert space and of states

$$\begin{aligned} \mathcal{H} &\cong \int_{\mathbb{T}}^{\oplus} \mathfrak{h} \, d^2 k \equiv L^2(\mathbb{T}, \mathfrak{h}), \qquad \mathfrak{h} = L^2(\mathcal{C}) \\ \psi(x) &= \int_{\mathbb{T}} \psi_k(x) d^2 k, \qquad \psi \longleftrightarrow (\psi_k)_{k \in \mathbb{T}} \end{aligned}$$

by reduction of the representation

$$(U_n\psi)(x) = \int_{\mathbb{T}} \psi_k(x) \mathrm{e}^{-\mathrm{i}k\cdot n} d^2k$$

Note: A state $\mathbb{T} \ni k \mapsto \psi_k \in \mathfrak{h}$ is a section of the (trivial) vector bundle $\mathbb{T} \times \mathfrak{h}$

Decomposition of Hamiltonian (translation invariant)

$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Decomposition of Hamiltonian (translation invariant)

$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

H(k) acting on h = L²(C) has discrete spectrum (C compact) with eigenvalues ε_j(k) (j = 0, 1, ...)

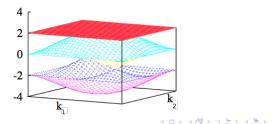
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Decomposition of Hamiltonian (translation invariant)

$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

- H(k) acting on h = L²(C) has discrete spectrum (C compact) with eigenvalues ε_j(k) (j = 0, 1, ...)
- ► *H* has continuous spectrum:

$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$



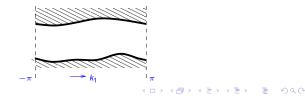
Decomposition of Hamiltonian (translation invariant)

$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

H(k) acting on h = L²(C) has discrete spectrum (C compact) with eigenvalues ε_j(k) (j = 0, 1, ...)

H has continuous spectrum:

$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$



Decomposition of Hamiltonian (translation invariant)

$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

H(k) acting on h = L²(C) has discrete spectrum (C compact) with eigenvalues ε_j(k) (j = 0, 1, ...)

H has continuous spectrum:

$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$

F

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

(ロ) (同) (三) (三) (三) (○) (○)

or the projection associated to a single isolated band

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

$$\mu$$

or the projection associated to a single isolated band Decomposition

 $P\psi \longleftrightarrow (P(k)\psi_k)_{k\in\mathbb{T}}$

Definition. The Bloch bundle is the complex vector bundle with base space \mathbb{T} and fiber range $P(k) \subset \mathfrak{h}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

$$\mu$$

or the projection associated to a single isolated band Decomposition

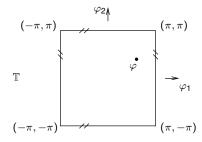
 $P\psi \longleftrightarrow (P(k)\psi_k)_{k\in\mathbb{T}}$

Definition. The Bloch bundle is the complex vector bundle with base space \mathbb{T} and fiber range $P(k) \subset \mathfrak{h}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: It is a subbundle of $\mathbb{T} \times \mathfrak{h}$, possibly not trivial.

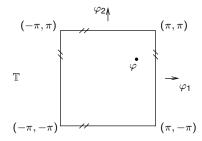
Bundles (E, \mathbb{T}) on the 2-torus



$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● のへで

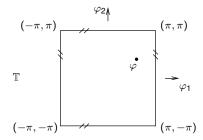
Bundles (E, \mathbb{T}) on the 2-torus



・ロト ・四ト ・ヨト ・ヨトー

æ.

Bundles (E, \mathbb{T}) on the 2-torus



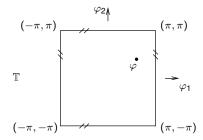
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Fibers E_{φ} : abstract linear spaces

- Frame bundle *F*(*E*) has fibers *F*(*E*)_φ ∋ *v* = (*v*₁,...*v*_N) consisting of bases *v* of *E*_φ.
- Does F(E) admit a global section?

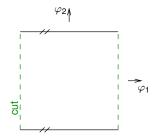
Bundles (E, \mathbb{T}) on the 2-torus



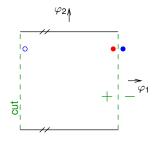
$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Fibers E_{φ} : abstract linear spaces

- Frame bundle *F*(*E*) has fibers *F*(*E*)_φ ∋ *v* = (*v*₁,...*v*_N) consisting of bases *v* of *E*_φ.
- Does F(E) admit a global section? Yes, iff E is trivial



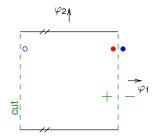
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boundary values v₊(φ₂) and v₋(φ₂) at the point (π, φ₂) ≡ (−π, φ₂) of the cut



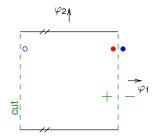
Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boundary values $v_+(\varphi_2)$ and $v_-(\varphi_2)$ at the point $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$ of the cut

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2)T(arphi_2)$$
, $(arphi_2 \in S^1)$



Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

(日) (日) (日) (日) (日) (日) (日)

Boundary values $v_+(\varphi_2)$ and $v_-(\varphi_2)$ at the point $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$ of the cut

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2)T(arphi_2), \qquad (arphi_2 \in S^1)$$

Definition. The Chern number ch(E) is the winding number of det T(φ₂) along φ₂ ∈ S¹

Definition. The Chern number ch(E) is the winding number of det $T(\varphi_2)$ along $\varphi_2 \in S^1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Definition. The Chern number ch(E) is the winding number of det $T(\varphi_2)$ along $\varphi_2 \in S^1$

- $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$
- ▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. The Chern number ch(E) is the winding number of det $T(\varphi_2)$ along $\varphi_2 \in S^1$

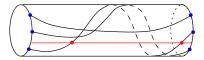
• $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$

▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:

Definition. The Chern number ch(E) is the winding number of det $T(\varphi_2)$ along $\varphi_2 \in S^1$

• $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$

▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:



Definition. The Chern number ch(E) is the winding number of det $T(\varphi_2)$ along $\varphi_2 \in S^1$

• $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$

▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:

winding number= signed number of crossings of fiducial line ch(E) = -2

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle *E* defined by the Fermi projection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle *E* defined by the Fermi projection

Physical meaning (Thouless et al.): The Hall conductance in the bulk interpretation is

 $\sigma_{\rm H} = (2\pi)^{-1} {\rm ch}(E)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle *E* defined by the Fermi projection

Physical meaning (Thouless et al.): The Hall conductance in the bulk interpretation is

$$\sigma_{
m H} = (2\pi)^{-1} {
m ch}(E)$$

Remark.

$$\operatorname{ch}(E) = \frac{1}{2\pi \mathrm{i}} \int_{\mathbb{T}} d^2 k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● の � @

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane inde× Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

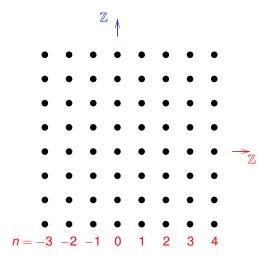
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

From plane (bulk) to half-plane (edge)

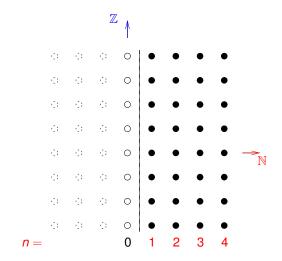
Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From plane (bulk) to half-plane (edge)

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$



▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$

► Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$

(ロ) (同) (三) (三) (三) (○) (○)

► Remaining symmetry L₂: translation in 2-direction; corresponding unit cell C[#] = X/L₂ not compact (half-line)

- ▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$
- Remaining symmetry L₂: translation in 2-direction; corresponding unit cell C[#] = X/L₂ not compact (half-line)
- Bloch decomposition over the circle S¹

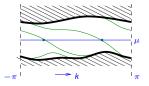
$$H^{\sharp}\cong\int_{S^1}^{\oplus}H^{\sharp}(k)\,dk$$

(日) (日) (日) (日) (日) (日) (日)

- ▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$
- ► Remaining symmetry L₂: translation in 2-direction; corresponding unit cell C[#] = X/L₂ not compact (half-line)
- Bloch decomposition over the circle S¹

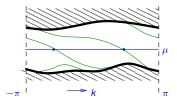
$$H^{\sharp} \cong \int_{S^1}^{\oplus} H^{\sharp}(k) \, dk$$

► H[#](k) acting on L²(C[#]) has continuous and (possibly) discrete spectrum



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hall conductance (edge)

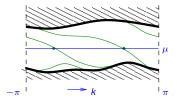


Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings of Fermi energy

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Hall conductance (edge)



Definition: Edge Index

 \mathcal{N}^{\sharp} = signed number of eigenvalue crossings of Fermi energy

Physical meaning: The Hall conductance in the edge interpretation is

$$\sigma_{\mathrm{H}} = (2\pi)^{-1} \mathcal{N}^{\sharp}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

Bulk-edge correspondence:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition: Edge Index

 $\mathcal{N}^{\sharp} =$ signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the *j*-th band. Bulk index is sum over filled bands.

Bulk-edge correspondence:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(cf. Hatsugai)

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase Topological insulators: time-reversal invariant case

- Insulator in the Bulk: Excitation gap For independent electrons: spectral gap at Fermi energy
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Topological insulators: time-reversal invariant case

- Insulator in the Bulk: Excitation gap For independent electrons: spectral gap at Fermi energy
- Time-reversal invariant fermionic system
- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

(日) (日) (日) (日) (日) (日) (日)

There is a map Θ on \mathcal{H} (time-reversal) such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Θ is anti-unitary and $\Theta^2 = -1$;

► [Θ, *H*] = 0

There is a map Θ on \mathcal{H} (time-reversal) such that

• Θ is anti-unitary and $\Theta^2 = -1$;

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k) \Theta^{-1}, \qquad (k \in \mathbb{T})$$

There is a map Θ on \mathcal{H} (time-reversal) such that

• Θ is anti-unitary and $\Theta^2 = -1$;

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k) \Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E) = 0$$

(日) (日) (日) (日) (日) (日) (日)

There is a map Θ on \mathcal{H} (time-reversal) such that

• Θ is anti-unitary and $\Theta^2 = -1$;

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k) \Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E) = 0$$

Such insulators are trivial from the Quantum Hall point of view.

There is a map Θ on \mathcal{H} (time-reversal) such that

• Θ is anti-unitary and $\Theta^2 = -1$;

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k) \Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E) = 0$$

Such insulators are trivial from the Quantum Hall point of view. Yet interesting in their own class.

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

with $\Theta^2 = -1$.

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

(日) (日) (日) (日) (日) (日) (日)

For E the Bloch bundle

▶ $\mathcal{I} = +1$: ordinary insulator; $\mathcal{I} = -1$: topological insulator

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \dim E$)

(日) (日) (日) (日) (日) (日) (日)

For E the Bloch bundle

- ▶ $\mathcal{I} = +1$: ordinary insulator; $\mathcal{I} = -1$: topological insulator
- Kane, Mele; Fu, Kane: Index realized as Pfaffian

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

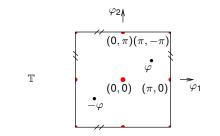
Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

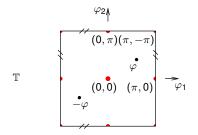
Time periodic systems

Definitions and results Some numerics The anomalous phase



◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

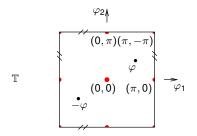
$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\blacktriangleright \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

- Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $\Theta: E_{\varphi} \to E_{-\varphi}, \Theta$ antilinear with $\Theta^2 = -1$



$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

- Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $\Theta: E_{\varphi} \to E_{-\varphi}, \Theta$ antilinear with $\Theta^2 = -1$
- Frame bundle F(E) has fibers F(E)_φ ∋ v = (v₁,...v_N) consisting of bases v of E_φ.

The Fu-Kane index

• $\langle \cdot, \cdot \rangle$ inner product on E_{φ}

The Fu-Kane index

 $\blacktriangleright \langle \cdot, \cdot \rangle \text{ inner product on } E_{\varphi}$

By ch(E) = 0: There is a global section u(φ) = (u₁(φ), ... u_N(φ)) (orthonormal) of the frame bundle

$$W_{ij}(\varphi) := \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note W(φ)*W(φ) = 1 and W(φ)^T = −W(−φ). In particular W(φ) antisymmetric at TRIPs.

The Fu-Kane index

• $\langle \cdot, \cdot
angle$ inner product on E_{φ}

By ch(E) = 0: There is a global section u(φ) = (u₁(φ), ... u_N(φ)) (orthonormal) of the frame bundle

$$W_{ij}(\varphi) := \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$

Note W(φ)^{*}W(φ) = 1 and W(φ)^T = −W(−φ). In particular W(φ) antisymmetric at TRIPs.

Set

$$\mathcal{I}(E) := \prod_{a \in \mathit{TRIP}} rac{\mathsf{pf} \; \mathit{W}(arphi_a)}{\sqrt{\det \mathit{W}(arphi_a)}} = \pm 1$$

(Pfaffian defined for antisymmetric matrices, det $W = (pf W)^2$)

Family of matrices W(φ₂) with single parameter 0 ≤ φ₂ ≤ π, det W(φ₂) ≠ 0, antisymmetric at endpoints φ₂ = 0, π

 Family of matrices W(φ₂) with single parameter 0 ≤ φ₂ ≤ π, det W(φ₂) ≠ 0, antisymmetric at endpoints φ₂ = 0, π

(ロ) (同) (三) (三) (三) (○) (○)

- Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to $\pm pf(W(\pi))$
- Set $\widehat{\mathcal{I}}(W) = \pm$.

- Family of matrices W(φ₂) with single parameter 0 ≤ φ₂ ≤ π, det W(φ₂) ≠ 0, antisymmetric at endpoints φ₂ = 0, π
- Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to $\pm pf(W(\pi))$

Set
$$\widehat{\mathcal{I}}(W) = \pm$$
.
 \mathbb{T}

$$\widehat{\mathcal{I}}(W) = \pm$$

$$\mathbb{T}$$

$$\widehat{\mathcal{I}}(0,\pi)(\pi,-\pi)$$

$$\widehat{\varphi}$$

$$(0,0) \quad (\pi,0)$$

$$\widehat{\varphi}$$

Set

 $W_0(\varphi_2) = W(0,\varphi_2), \qquad W_{\pi}(\varphi_2) = W(\pi,\varphi_2)$

A D F A 同 F A E F A E F A Q A

- Family of matrices W(φ₂) with single parameter 0 ≤ φ₂ ≤ π, det W(φ₂) ≠ 0, antisymmetric at endpoints φ₂ = 0, π
- Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to $\pm pf(W(\pi))$

Set
$$\widehat{\mathcal{I}}(W) = \pm$$
.

$$\mathbb{T}$$

$$\varphi^{2}$$

Set

 $W_0(\varphi_2) = W(0,\varphi_2), \qquad W_{\pi}(\varphi_2) = W(\pi,\varphi_2)$

Then

$$\widehat{\mathcal{I}}(\boldsymbol{E}) = \widehat{\mathcal{I}}(\boldsymbol{W}_0)\widehat{\mathcal{I}}(\boldsymbol{W}_{\pi})$$

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

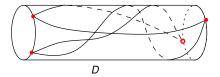
Time periodic systems

Definitions and results Some numerics The anomalous phase

Consider a fixed even number of lines moving forward along a (finite) cylinder.

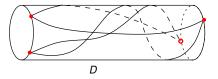
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Condition: Lines pair up at the ends



Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

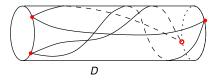


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

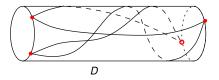


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle. (Lines can be thought of as world lines of dancers of a rueda)

(ロ) (同) (三) (三) (三) (○) (○)

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



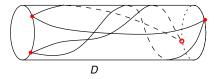
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



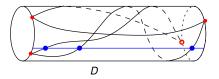
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



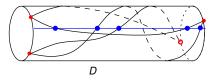
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



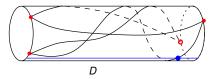
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



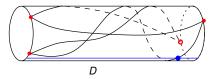
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



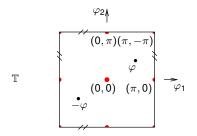
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

What is the index that tells the difference?

 $\mathcal{I}(D) =$ parity of number of crossings of fiducial line

(ロ) (同) (三) (三) (三) (○) (○)

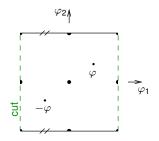


$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

- Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $\Theta: E_{\varphi} \to E_{-\varphi}, \Theta$ antilinear with $\Theta^2 = -1$
- Frame bundle F(E) has fibers F(E)_φ ∋ v = (v₁,...v_N) consisting of bases v of E_φ.

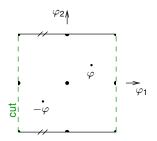
Towards another index

Consider the cut torus:



Towards another index

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

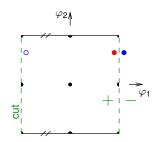
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Idea: At a time reversal invariant point, that means (N = 2)

$$v_2 = \Theta v_1$$
 $v_1 = -\Theta v_2$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

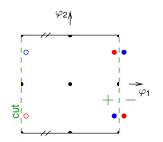
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2) T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

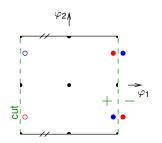
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2)T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

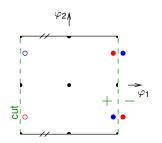
with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2) T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$

There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$\mathbf{v}(-\varphi) = (\Theta \mathbf{v}(\varphi))\varepsilon$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_+(arphi_2) = \mathbf{v}_-(arphi_2) T(arphi_2) , \qquad (arphi_2 \in \mathcal{S}^1)$$

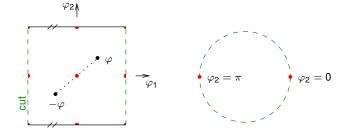
There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

with $\Theta_0 = \varepsilon C$, (*C* complex conjugation on \mathbb{C}^N)

We have

• torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

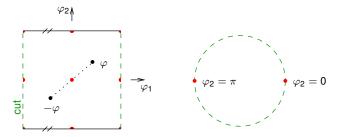


・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

We have

• torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)

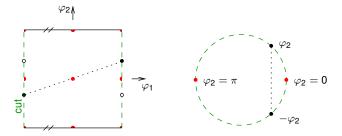


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

a (compatible) section of the frame bundle of E

We have

• torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)



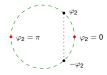
a (compatible) section of the frame bundle of E

▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

$$\Theta_0 T(arphi_2) = T^{-1}(-arphi_2) \Theta_0 \ , \qquad (arphi_2 \in \mathcal{S}^1)$$

with $\Theta_0:\mathbb{C}^N\to\mathbb{C}^N$ antilinear, $\Theta_0^2=-1$

Time-reversal invariant bundles on the torus

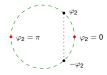


$$\blacktriangleright \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



$$\bullet \ \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

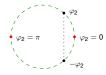
- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\overline{\lambda}T)\Theta_0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●



$$\bullet \ \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

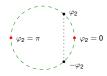
- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\overline{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (degeneracy)



$$\bullet \ \Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

- Only half the cut ($0 \le \varphi_2 \le \pi$) matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

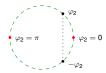
Eigenvalues of *T* come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\overline{\lambda}T)\Theta_0$$

(日) (日) (日) (日) (日) (日) (日)

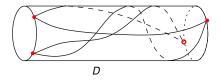
Phases $\lambda/|\lambda|$ pair up (degeneracy)

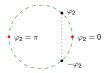
For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*



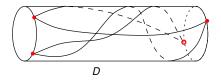
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$ • For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, *D*





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



Definition (Index): $\mathcal{I}(E) := \mathcal{I}(T) := \mathcal{I}(D)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Let $u(\varphi)$ be global frame as in the Fu-Kane index:

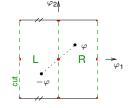
$$egin{aligned} \mathcal{W}_{ij}(arphi) &= \langle u_i(arphi), \Theta u_j(-arphi)
angle \ \widehat{\mathcal{I}}(E) &= \widehat{\mathcal{I}}(W_0) \widehat{\mathcal{I}}(W_\pi) \end{aligned}$$

• Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$\begin{split} \mathcal{W}_{ij}(\varphi) &= \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle \\ \widehat{\mathcal{I}}(\mathcal{E}) &= \widehat{\mathcal{I}}(\mathcal{W}_0) \widehat{\mathcal{I}}(\mathcal{W}_{\pi}) \end{split}$$

• Define frame $v(\phi)$

$$\mathbf{v}(\varphi) = \begin{cases} \mathbf{u}(\varphi) \ , & (\varphi \in L) \\ \Theta \mathbf{u}(-\varphi)\varepsilon \ , & (\varphi \in R) \end{cases}$$



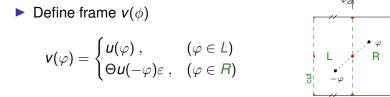
・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Frame is compatible, but not global:

• Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$egin{aligned} \mathcal{W}_{ij}(arphi) &= \langle u_i(arphi), \Theta u_j(-arphi)
angle \ \widehat{\mathcal{I}}(E) &= \widehat{\mathcal{I}}(\mathcal{W}_0) \widehat{\mathcal{I}}(\mathcal{W}_\pi) \end{aligned}$$



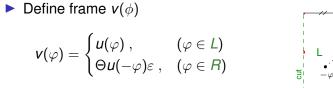
Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2)$,

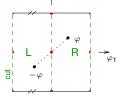
$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$\begin{split} \mathcal{W}_{ij}(\varphi) &= \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle \\ \widehat{\mathcal{I}}(\mathcal{E}) &= \widehat{\mathcal{I}}(\mathcal{W}_0) \widehat{\mathcal{I}}(\mathcal{W}_{\pi}) \end{split}$$





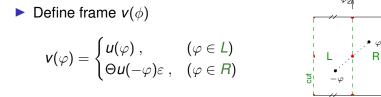
Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2)$,

$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

•
$$W(\varphi_2) = T(\varphi_2)\varepsilon$$
. (crucial)

• Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$\begin{split} \mathcal{W}_{ij}(\varphi) &= \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle \\ \widehat{\mathcal{I}}(\mathcal{E}) &= \widehat{\mathcal{I}}(\mathcal{W}_0) \widehat{\mathcal{I}}(\mathcal{W}_{\pi}) \end{split}$$



Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2)$,

$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

•
$$W(\varphi_2) = T(\varphi_2)\varepsilon$$
. Then $\widehat{\mathcal{I}}(W) = \mathcal{I}(T)$ and hence
 $\widehat{\mathcal{I}}(E) = \mathcal{I}(E)$

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'25"

Rueda de casino. Time 0'35"

Rueda de casino. Time 0'44"

ヘロト 人間 とくほとくほとう

э

Rueda de casino. Time 0'44.25"

Rueda de casino. Time 0'44.50"

Rueda de casino. Time 0'44.75"

Rueda de casino. Time 0'45"

Rueda de casino. Time 0'45.25"

Rueda de casino. Time 0'45.50"

Rueda de casino. Time 0'46"

Rueda de casino. Time 0'47"

Rueda de casino. Time 0'55"

Rueda de casino. Time 1'16"

Rueda de casino. Time 3'23"

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

There are dances which can not be deformed into one another.

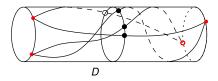
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What is the index that tells the difference?

A snapshot of the dance

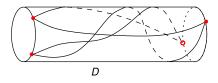
A snapshot of the dance

Dance D as a whole



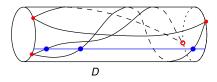
A snapshot of the dance

Dance D as a whole



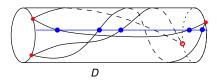
A snapshot of the dance

Dance D as a whole



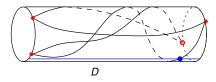
A snapshot of the dance

Dance D as a whole



A snapshot of the dance

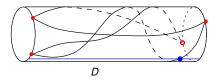
Dance D as a whole



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A snapshot of the dance

Dance D as a whole



 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$Ind(P, Q) = dim\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - dim\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} = dim \ker(A - 1) - \dim \ker(A + 1), \qquad A = P - Q$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$\begin{aligned} \mathsf{Ind}(P,Q) &= \\ \dim\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - \dim\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \\ &= \dim \ker(A-1) - \dim \ker(A+1), \qquad A = P - Q \end{aligned}$$

With time-reversal symmetry:

 $\mathcal{I} = (-1)^{\dim \ker(A-1)}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

(cf. Atiyah; Schulz-Baldes; Katsura, Koma)

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$\begin{aligned} \mathsf{Ind}(P,Q) &= \\ \dim\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - \dim\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \\ &= \dim \ker(A-1) - \dim \ker(A+1), \qquad A = P - Q \end{aligned}$$

With time-reversal symmetry:

 $\mathcal{I} = (-1)^{\dim \ker(A-1)}$

(日) (日) (日) (日) (日) (日) (日)

(cf. Atiyah; Schulz-Baldes; Katsura, Koma) In both cases, apply to $P = P_{\mu}$, $Q = UP_{\mu}U^*$. Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Time periodic systems

Definitions and results Some numerics The anomalous phase

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

An experiment: Amo et al.



Figure: Zigzag chain of coupled micropillars and lasing modes

ロ > < 個 > < 三 > < 三 > < 三 > < 回 > < < 回 >

An experiment: Amo et al.

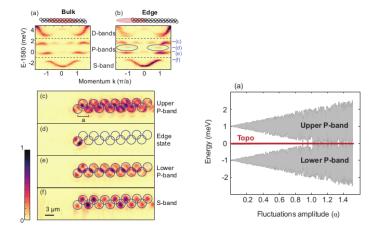


Figure: Lasing modes: bulk and edge

・ロット (雪) (日) (日)

ъ

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

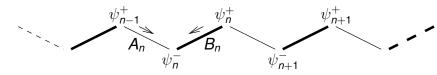
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics The anomalous phase

The Su-Schrieffer-Heeger model (1 dimensional)

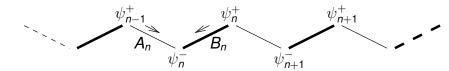
Alternating chain with nearest neighbor hopping



・ロット (雪) (日) (日)

э

The Su-Schrieffer-Heeger model (1 dimensional) Alternating chain with nearest neighbor hopping



Hilbert space: sites arranged in dimers

$$\mathcal{H} = \ell^{2}(\mathbb{Z}, \mathbb{C}^{N}) \otimes \mathbb{C}^{2} \ni \psi = \left(\begin{array}{c} \psi_{n}^{+} \\ \psi_{n}^{-} \end{array}\right)_{n \in \mathbb{Z}}$$

Hamiltonian

$$H = \left(egin{array}{cc} 0 & \mathcal{S}^* \ \mathcal{S} & 0 \end{array}
ight)$$

with S, S^* acting on $\ell^2(\mathbb{Z}, \mathbb{C}^N)$ as

$$(S\psi^+)_n = A_n\psi^+_{n-1} + B_n\psi^+_n, \qquad (S^*\psi^-)$$

 $(A_n, B_n \in \operatorname{GL}(N)$ almost surely)

$$S^*\psi^{-})_n = A^*_{n+1}\psi^{-}_{n+1} + B^*_n\psi^{-}_n$$

< □ > < □ > < □ > < □ > < □ > < □ >

Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi\} \equiv H\Pi + \Pi H = 0$$

{

hence

$$H\psi = \lambda\psi \implies H(\Pi\psi) = -\lambda(\Pi\psi)$$

Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi \} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Energy $\lambda = 0$ is special:

Eigenspace of $\lambda = 0$ invariant under Π

ł

Chiral symmetry

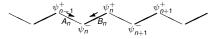
$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

Energy $\lambda = 0$ is special:

Eigenspace of $\lambda = 0$ invariant under Π



• Eigenvalue equation $H\psi = \lambda \psi$ is $S\psi^+ = \lambda \psi^-$, $S^*\psi^- = \lambda \psi^+$, i.e.

$$\boldsymbol{A}_{\boldsymbol{n}}\psi_{\boldsymbol{n}-1}^{+} + \boldsymbol{B}_{\boldsymbol{n}}\psi_{\boldsymbol{n}}^{+} = \lambda\psi_{\boldsymbol{n}}^{-}, \qquad \boldsymbol{A}_{\boldsymbol{n}+1}^{*}\psi_{\boldsymbol{n}+1}^{-} + \boldsymbol{B}_{\boldsymbol{n}}^{*}\psi_{\boldsymbol{n}}^{-} = \lambda\psi_{\boldsymbol{n}}^{+}$$

is one 2nd order difference equation, but two 1st order for $\lambda = 0$

Bulk index

Let

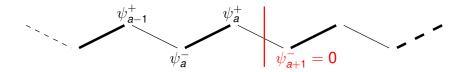
$$\Sigma = \operatorname{sgn} H$$

Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr} (\Pi \Sigma [\Lambda, \Sigma])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

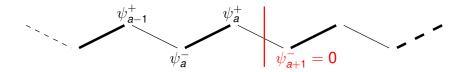
with $\Lambda = \Lambda(n)$ a switch function (cf. Prodan et al.)



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

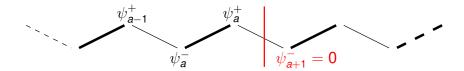
Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.



・ コット (雪) (小田) (コット 日)

Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

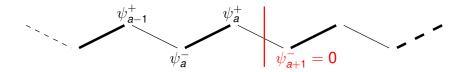
Eigenspace of $\lambda = 0$ still invariant under Π .



Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved. Eigenspace of $\lambda = 0$ still invariant under Π .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

・ コット (雪) (小田) (コット 日)



Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved. Eigenspace of $\lambda = 0$ still invariant under Π .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Definition. The Edge index is the spectral asymmetry

$$\mathcal{N}_a^{\sharp} := \mathcal{N}_a^+ - \mathcal{N}_a^-$$

and can be shown to be independent of *a*. Call it \mathcal{N}^{\sharp} .

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remarks.

Spectral gap case $(0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a))$

$$H_{a} = \begin{pmatrix} 0 & S_{a}^{*} \\ S_{a} & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

A D F A 同 F A E F A E F A Q A

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remarks.

Spectral gap case ($0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a)$)

$$H_{a} = \begin{pmatrix} 0 & S_{a}^{*} \\ S_{a} & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

Supersymmetry: Is realized as (*H_a*, Π) = (supercharge, grading). Then *N[#]_a* is Witten index.

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remarks.

Spectral gap case ($0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a)$)

$$H_{a} = \begin{pmatrix} 0 & S_{a}^{*} \\ S_{a} & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

Supersymmetry: Is realized as (H_a, Π) = (supercharge, grading). Then N[#]_a is Witten index.

Periodic case

$$S = \int_{S^1}^{\oplus} S(k)$$

Toeplitz index theorem:

$$\mathcal{N}^{\sharp} = -\mathrm{Wind}(k \mapsto \det S(k))$$

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

(ロ) (同) (三) (三) (三) (○) (○)

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$.

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

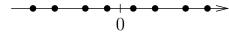
Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2*N* exponents, spectrum is even (Example: N = 4)

• at energy
$$\lambda \neq 0$$
 (simple spectrum)



- Spectrum is simple because measure on transfer matrices is irreducible
- so $\gamma = 0$ is not in the spectrum; localization follows

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

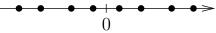
Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N = 4)

• at energy
$$\lambda \neq 0$$
 (simple spectrum)



(日) (日) (日) (日) (日) (日) (日)

At λ = 0 chains decouple: C^N ⊕ 0 and 0 ⊕ C^N are invariant subspaces

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

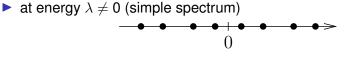
$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

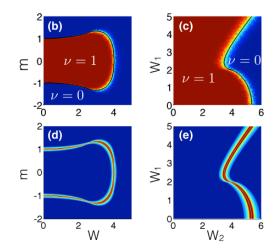
Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N = 4)



▶ of the upper (+) and lower (-) chains, at energy $\lambda = 0$

• at energy $\lambda = 0$ (phase boundary)

Some numerics



Left/right column: two parameterized chiral models (N = 1) upper/lower row: index and Lyapunov exponent (from Prodan et al.)

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Recall $\mathcal{N}_a = tr(\Pi P_{0,a})$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Recall
$$\mathcal{N}_a = tr(\Pi P_{0,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$\operatorname{tr}(\Pi \wedge) = N(\sum_{n \leq a} \Lambda(n)) \operatorname{tr}_{\mathbb{C}^2} \Pi = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

though $\|\Pi \Lambda\|_1 = \|\Lambda\|_1 \to \infty$, $(a \to +\infty)$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$\operatorname{tr}(\Pi \Lambda) = 0$$

$$\underbrace{\operatorname{tr}(\Pi \Lambda)}_{0} = \operatorname{tr}(\Pi \Lambda P_{0,a}) + \operatorname{tr}(\Pi \Lambda P_{+,a}) + \operatorname{tr}(\Pi \Lambda P_{-,a})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

 $\operatorname{tr}(\Pi \Lambda) = 0$ a $\operatorname{tr}(\Pi \Lambda) = \operatorname{tr}(\Pi \Lambda P_{0,a}) + \operatorname{tr}(\Pi \Lambda P_{+,a}) + \operatorname{tr}(\Pi \Lambda P_{-,a})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\operatorname{tr}(\Pi \wedge P_{+,a}) = \operatorname{tr}(P_{+,a} \Pi \wedge P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \wedge P_{+,a})$$
$$= \operatorname{tr}(\Pi P_{-,a}[\Lambda, P_{+,a}])$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

 $\operatorname{tr}(\Pi \wedge) = 0$ $\underbrace{\operatorname{tr}(\Pi \wedge)}_{0} = \operatorname{tr}(\Pi \wedge P_{0,a}) + \operatorname{tr}(\Pi \wedge P_{+,a}) + \operatorname{tr}(\Pi \wedge P_{-,a})$ $\underbrace{\operatorname{tr}(P_{+,a} \Pi \wedge P_{+,a})}_{0} = \operatorname{tr}(\Pi P_{-,a} \wedge P_{+,a})$

$$\operatorname{tr}(\Pi \wedge P_{+,a}) = \operatorname{tr}(P_{+,a}\Pi \wedge P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \wedge P_{+,a})$$
$$= \operatorname{tr}(\Pi P_{-,a}[\Lambda, P_{+,a}]) \to \operatorname{tr}(\Pi P_{-}[\Lambda, P_{+}]) \qquad (a \to +\infty)$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$tr(\Pi\Lambda)=0$$

So,

$$\operatorname{tr}(\Pi\Lambda) = \underbrace{\operatorname{tr}(\Pi\Lambda P_{0,a})}_{\to \mathcal{N}^{\sharp}} + \underbrace{\operatorname{tr}(\Pi\Lambda P_{+,a}) + \operatorname{tr}(\Pi\Lambda P_{-,a})}_{\to \operatorname{tr}(\Pi P_{-}[\Lambda, P_{+}]) + \operatorname{tr}(\Pi P_{+}[\Lambda, P_{-}]) = -\mathcal{N}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

q.e.d.

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Time periodic systems

Definitions and results Some numerics The anomalous phase

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results

Some numerics The anomalous phase

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

(disorder allowed, no adiabatic setting)

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t) $\hat{U} = U(T)$ fundamental propagator

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t+T)=H(t)

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t) $\hat{U} = U(T)$ fundamental propagator

Assumption: Spectrum of \hat{U} has gaps:

Special case first: U(t) periodic, i.e.

 $\widehat{U} = 1$

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = \frac{1}{2} \int_0^T dt \operatorname{tr}(U^* \partial_t U \big[U^*[\Lambda_1, U], U^*[\Lambda_2, U] \big])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = \frac{1}{2} \int_0^T dt \operatorname{tr}(U^* \partial_t U \big[U^* [\Lambda_1, U], U^* [\Lambda_2, U] \big])$$

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_{\rm B} = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2 k \operatorname{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with U = U(t, k) acting on the space of states of quasi-momentum $k = (k_1, k_2)$. Map U: 3-torus \rightarrow unitary group \mathcal{U} ; $\pi_3(\mathcal{U}) = \mathbb{Z}$.

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = \frac{1}{2} \int_{0}^{T} dt \operatorname{tr}(U^{*} \partial_{t} U \big[U^{*}[\Lambda_{1}, U], U^{*}[\Lambda_{2}, U] \big])$$

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_{\rm B} = \frac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2 k \operatorname{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with U = U(t, k) acting on the space of states of quasi-momentum $k = (k_1, k_2)$. Map U: 3-torus \rightarrow unitary group \mathcal{U} ; $\pi_3(\mathcal{U}) = \mathbb{Z}$. Bulk index \mathcal{N}_B is degree of map.

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{\textit{U}}_{\rm E}$ corresponding fundamental propagator

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

(ロ) (同) (三) (三) (三) (○) (○)

 $\widehat{\textit{U}}_{\!
m E}$ corresponding fundamental propagator

In general: $\widehat{U}_{E} \neq 1$

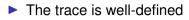
 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{U}_{\rm E}$ corresponding fundamental propagator In general: $\widehat{U}_{\rm E} \neq 1$

Edge index

$$\mathcal{N}_{\rm E}={\sf tr}(\widehat{\textit{U}}_{\rm E}^*[\Lambda_2,\widehat{\textit{U}}_{\rm E}])={\sf tr}(\widehat{\textit{U}}_{\rm E}^*\Lambda_2\widehat{\textit{U}}_{\rm E}-\Lambda_2)$$

Remarks.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

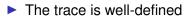
 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{U}_{\rm E}$ corresponding fundamental propagator In general: $\widehat{U}_{\rm E} \neq 1$

Edge index

$$\mathcal{N}_{\mathrm{E}} = \mathsf{tr}(\widehat{\textit{U}}_{\mathrm{E}}^*[\Lambda_2, \widehat{\textit{U}}_{\mathrm{E}}]) = \mathsf{tr}(\widehat{\textit{U}}_{\mathrm{E}}^*\Lambda_2\widehat{\textit{U}}_{\mathrm{E}} - \Lambda_2)$$

Remarks.



- N_E is charge that crossed the line $x_2 = 0$ during a period.
- \mathcal{N}_E is independent of Λ_2 and an integer.

 $\widehat{U} \neq 1$

 $\widehat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

 $\widehat{U}_1 = \widehat{U}_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\widehat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(-t) & (-T < t < 0) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\widehat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

has $\hat{U} = 1$.

 $\widehat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has $\widehat{U} = 1$. Define $\mathcal{N}, \mathcal{N}_E$ (for the pair) as before.

 $\widehat{U} \neq 1$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has $\widehat{U} = 1$. Define $\mathcal{N}, \mathcal{N}_E$ (for the pair) as before. Theorem (G., Tauber) $\mathcal{N} = \mathcal{N}_E$

Duality in time and space

Let the interface Hamiltonian $H_{I}(t)$ be a bulk Hamiltonian with

$$H_{\mathrm{I}}(t) = egin{cases} H_{\mathrm{I}}(t) \ H_{\mathrm{2}}(t) \ H_{\mathrm{2}}(t) \end{cases}$$

on states supported on large $\pm x_1$

(still assuming $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$)

Duality in time and space

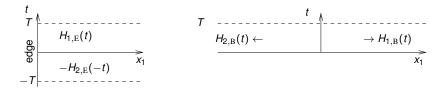
Let the interface Hamiltonian $H_{I}(t)$ be a bulk Hamiltonian with

$$H_{\rm I}(t) = \begin{cases} H_1(t) \\ H_2(t) \end{cases}$$
 on states supported on large $\pm x_1$

(still assuming $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$)

Interface index

 $\mathcal{N}_{\mathrm{I}} = \mathsf{tr}\big(\widehat{U}_{\bullet}^* \widehat{U}_{\mathrm{I}}[\Lambda_2, \widehat{U}_{\bullet}^* \widehat{U}_{\mathrm{I}}]\big)$



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Duality in time and space

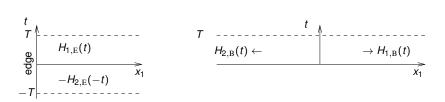
Let the interface Hamiltonian $H_{I}(t)$ be a bulk Hamiltonian with

$$H_{\rm I}(t) = \begin{cases} H_1(t) \\ H_2(t) \end{cases}$$
 on states supported on large $\pm x_1$

(still assuming $\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$)

Interface index

 $\mathcal{N}_{\mathrm{I}} = \mathsf{tr}\big(\widehat{U}_{\bullet}^* \widehat{U}_{\mathrm{I}}[\Lambda_2, \widehat{U}_{\bullet}^* \widehat{U}_{\mathrm{I}}]\big)$



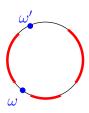
Theorem (G., Tauber) The indices for the two diagrams agree:

$$(\mathcal{N}=)\mathcal{N}_{E}=\mathcal{N}_{I}$$

(日) (日) (日) (日) (日) (日) (日)

 $\widehat{U}
eq 1$

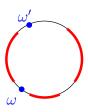
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Let $\alpha \in \mathbb{R}$ and $\omega = e^{i\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch

$$\log_lpha {\it Z} = \log |{\it Z}| + {
m i} \, {
m arg}_lpha \, {\it Z}$$

by $\alpha - 2\pi < \arg_{\alpha} z < \alpha$.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\alpha \in \mathbb{R}$ and $\omega = e^{i\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch

$$\log_{\alpha} z = \log |z| + i \arg_{\alpha} z$$

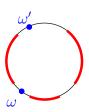
by $\alpha - 2\pi < \arg_{\alpha} z < \alpha$.

Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$-\mathrm{i} \mathcal{H}_{lpha} \mathcal{T} := \log_{lpha} \widehat{\mathcal{U}}$$

So,

$$\begin{array}{l} & \widehat{U}_{\alpha} = \widehat{U} \\ & U_{\alpha+2\pi}(t) = U_{\alpha}(t) e^{2\pi i t/T} \\ & \mathcal{N}_{B,\alpha+2\pi} = \mathcal{N}_{B,\alpha} =: \mathcal{N}_{\omega} \end{array}$$



Let $\alpha \in \mathbb{R}$ and $\omega = e^{i\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch

$$\log_lpha {z} = \log |z| + \mathrm{i} \arg_lpha {z}$$

by $\alpha - 2\pi < \arg_{\alpha} z < \alpha$.

Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$-\mathrm{i} \mathcal{H}_{lpha} \mathcal{T} := \log_{lpha} \widehat{\mathcal{U}}$$

Theorem (Rudner et al.; G., Tauber) For ω, ω' in gaps

$$\mathcal{N}_{\omega'} - \mathcal{N}_{\omega} = \operatorname{i} \operatorname{tr} oldsymbol{P}ig[[oldsymbol{P}, oldsymbol{\Lambda_1}], [oldsymbol{P}, oldsymbol{\Lambda_2}]ig]$$

where $P = P_{\omega,\omega'}$ is the spectral projection associated with spec \hat{U} between ω, ω' (counter-clockwise)

Some physics background first

How it all began: (Integer) Quantum Hall system Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane inde× Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

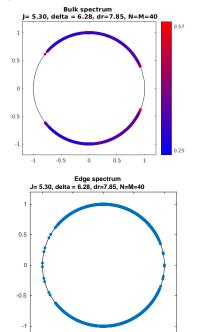
Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Bulk and Edge spectrum



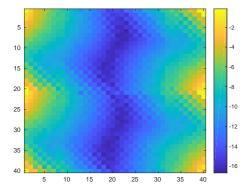
▲目▶▲目▶ 目 のへの

Computing the edge index

Edge index based $\mathcal{N}_{E,\alpha}$ based on the pair (H, H_{α}) (with $\alpha = \pi$)

$$\mathcal{N}_{\mathrm{E}, \alpha} = \mathrm{tr} \, \boldsymbol{A} \qquad \boldsymbol{A} = \widehat{U}_{\mathrm{E}}^* \Lambda_2 \widehat{U}_{\mathrm{E}} - \widehat{U}_{\alpha, \mathrm{E}}^* \Lambda_2 \widehat{U}_{\alpha, \mathrm{E}}$$

The diagonal integral kernel A(x, x) as $\log |A(x, x)|$



Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

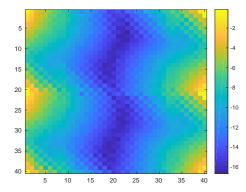
(日) (日) (日) (日) (日) (日) (日)

Computing the edge index

Edge index based $\mathcal{N}_{E,\alpha}$ based on the pair (H, H_{α}) (with $\alpha = \pi$)

$$\mathcal{N}_{\mathrm{E},lpha} = \mathrm{tr}\,\boldsymbol{A} \qquad \boldsymbol{A} = \widehat{\boldsymbol{U}}_{\mathrm{E}}^* \Lambda_2 \widehat{\boldsymbol{U}}_{\mathrm{E}} - \widehat{\boldsymbol{U}}_{lpha,\mathrm{E}}^* \Lambda_2 \widehat{\boldsymbol{U}}_{lpha,\mathrm{E}}$$

The diagonal integral kernel A(x, x) as $\log |A(x, x)|$



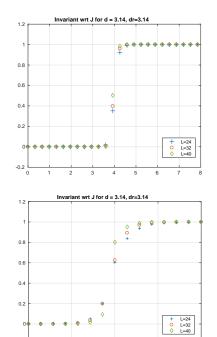
Boundary conditions:

Vertical edges: Dirichlet

・ロン ・四 と ・ ヨ と 一 ヨ

Horizontal edges: Periodic

The transition



■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Some physics background first

How it all began: (Integer) Quantum Hall system: Topological insulators Bulk-edge correspondence The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment A chiral Hamiltonian and its indices

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time periodic systems

Definitions and results Some numerics

The anomalous phase

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

Remark. In the Hamiltonian case (e.g. IQHE)

$$\frac{1}{\mu} \frac{1}{\mu'} = \frac{1}{E}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

the index would vanish in all gaps: $\mathcal{N}_{\mu}=\mathcal{N}_{\mu'}=0$

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

Remark. In the Hamiltonian case (e.g. IQHE)

$$\mu$$
 μ' E

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

the index would vanish in all gaps: $\mathcal{N}_{\mu}=\mathcal{N}_{\mu'}=0$

Here: $\mathcal{N}_{\omega} = \mathcal{N}_{\omega'} \equiv \mathcal{N} \neq 0$ (possibly)

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega}=\mathcal{N}_{\omega'}\equiv\mathcal{N}\neq$ 0 (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization $M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega} = \mathcal{N}_{\omega'} \equiv \mathcal{N} \neq 0$ (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization $M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$

If *H* is time independent, then $\mathcal{M}(U) = 0$.

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (*z*: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega} = \mathcal{N}_{\omega'} \equiv \mathcal{N} \neq 0$ (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization $M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$

If *H* is time independent, then $\mathcal{M}(U) = 0$. So, for $(H_1(t), H_2(t)) = (H(t), H_\alpha)$ we have $\mathcal{N} = \mathcal{M}(U)$

Summary

Some physics background first

How it all began: (Integer) Quantum Hall systems Topological insulators Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

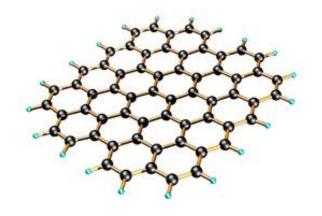
An experiment A chiral Hamiltonian and its indices

(ロ) (同) (三) (三) (三) (○) (○)

Time periodic systems

Definitions and results Some numerics The anomalous phase Thank you for your attention!

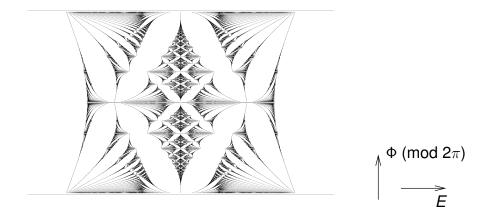
Quantum Hall in graphene (cf. talk by S. Becker)



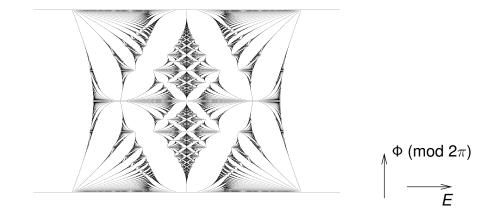
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Hamiltonian: Nearest neighbor hopping with flux Φ per plaquette.

Spectrum in black



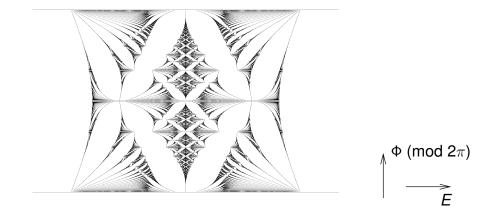
Spectrum in black



What is the Hall conductance (Chern number) in any white point?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Spectrum in black

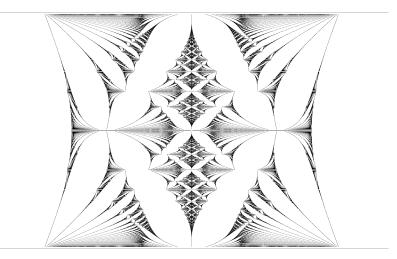


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Answer: Edge approach, method by Schulz-Baldes et al.

The colors of graphene

What is the Hall conductance (Chern number) in any white point?



The colors of graphene

What is the Hall conductance (Chern number) in any white point?

