Topological insulators from the perspective of non-commutative geometry and index theory

Hermann Schulz-Baldes **Erlangen**

main collaborators:

Prodan, Loring, Carey, Grossmann, Phillips De Nittis, Villegas, Kellendonk, Richter, Bellissard

> **Thilisi** September 2018

Plan for the lectures

- What is a topological insulator?
- What are the main experimental facts?
- ' What are the main theoretical elements?
- Almost everything in a one-dimensional toy model (SSH model)
- ' Toy models for higher dimension
- ' Algebraic formalism (crossed product C˚ -algebras)
- ' Measurable quantities as topological invariants
- Bulk-edge correspondence
- Index theorems for invariants
- ' Implementation of symmetries (periodic table of topological ins.)

Math tools: *K*-theory, index theory and non-commutative geometry

- 1. [Experimental facts](#page-3-0)
- 2. [Elements of basic theory](#page-11-0)
- 3. [One-dimensional toy model](#page-20-0)
- 4. *K*[-theory krash kourse](#page-28-0)
- 5. [Observable algebra for tight-binding models](#page-41-0)
- 6. [Topological invariants in solid state systems](#page-48-0)
- 7. [Invariants as response coefficients](#page-67-0)
- 8. [Bulk-boundary correspondence](#page-76-0)
- 9. [Implementation of symmetries](#page-93-0)
- 10. [Spectral flow in topological insulators](#page-102-0)
- 11. [Dirty superconductors](#page-112-0)

1 Experimental facts

What is a topological insulator?

' *d*-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

- Fermi level in a Gap or Anderson localization regime
- ' Topology of bulk (in Bloch bundles over Brillouin torus): winding numbers, Chern numbers, \mathbb{Z}_2 -invariants, higher invariants
- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Topological bound states at defects (zero modes)
- Toy models: tight-binding Hamiltonians
- ' Wider notions include interactions, bosons, spins, photonic crys.

Quantum Hall Effect: first topological insulator

Schematic representation of IQHE

Most important facts for IQHE

Two-dimensional electron gas between two doted semiconductors (Spot error in picture!) Measure of macroscopic (!) Hall tension

$$
\sigma = \frac{I_{x,x}}{V_{x,y}} = n \frac{e^2}{h} \quad \text{with } n \in \mathbb{N}
$$

Integer quantization with relative error 10^{-8} with fundamental constant Strong magnetic field and electron density can be modified Anderson localizated states can be filled without changing conductivity

Prizes and further advances on the QHE

Nobel prizes:

- \bullet Klitzing (1985)
- Störmer-Tsui-Laughlin (1998) for fractional QHE
- ' Thouless (2016) explanation of integer QHE & Thouless-Kosterlitz
- Haldane (2016) anomalous QHE & Haldane spin chain NO exterior magnetic field, only magnetic material
- QHE in graphene at room temperature

Novoselov, Geim et al 2007 (Nobel 2005)

' Anomalous QHE at room temperature in SnGe (Chinese group 2016) Review: Ren, Qiao, Niu 2016

Quantum spin Hall systems

Prior to 2005: no magnetic field \implies no topology

Kane-Mele (2005):

 \mathbb{Z}_2 -topology in two-dimensional systems with time-reversal symmetry First erronous proposal: spin orbit coupling in graphene (too small) Theoretical prediction by Bernevig and Zhang (2006): look into HgTe Measurement by Molenkamp group in Würzburg Complicated samples, inconsistencies with theory, so still disputed

Measurement in more conventional Si-semiconductor by Du group (Rice 2014) Surprise: stability w.r.t. magnetic field

Majorana zero modes

First proposal (Read-Green 2000):

attached to flux tubes in 2d $(p + ip)$ -wave superconductors

Second proposal (Kitaev, Beenacker group, Alicea, *etc.*): at ends of dirty superconductor wires placed on a semiconductor

Measurement in C. Marcus group (2014-2016 Bohr Inst., Kopenhagen)

Further measurements in Delft and Princeton groups

2017: http://www.seethroughthe.cloud/2017/01/23/

Headline is: Microsoft Steps Away From The Chalk Board to Create Quantum Computer

Mysterious citation:

The magic recipe involves a combination of semiconductors and superconductors

Higher dimensional topological insulators?

J. Phys. Soc. Jpn. 82 (2013) 102001 INVITED REVIEW PAPERS Y. ANDO

Type Material Band gap Bulk transport Remark Reference $2D, v = 1$ CdTe/HgTe/CdTe <10 meV insulating high mobility 31 $2D, v = 1$ AlSb/InAs/GaSb/AlSb $\sim 4 \text{ meV}$ weakly insulating gap is too small ~ 73 $3D (1;111)$ $Bi_{1-x}Sb_x$ $\leq 30 \text{ meV}$ weakly insulating complex S.S. $36, 40$ 3D (1;111) Sb semimetal metallic complex S.S. 39 $3D (1;000)$ $B_{12}Se_3$ 0.3 eV metallic simple S.S. 94 $3D (1;000)$ $B_{12}Te_3$ 0.17 eV metallic distorted S.S. 95, 96 $3D (1;000)$ Sb_2Te_3 $0.3 eV$ metallic heavily p-type 97 3D (1;000) Bi₂Te₂Se $\sim 0.2 \text{ eV}$ reasonably insulating ρ_{xx} up to 6 Ω cm 102, 103, 105 3D (1;000) (Bi,Sb)2Te³ <0:2 eV moderately insulating mostly thin films 193 $3D$ (1;000) Bi_{2-x}Sb_xTe_{3-y}Se_y <0.3 eV reasonably insulating Dirac-cone engineering 107, 108, 212 $3D (1;000)$ $B_{12}Te_{1.6}S_{1.4}$ $0.2 eV$ metallic n-type 210 3D (1;000) $Bi_{1.1}Sb_{0.9}Te_2S$ 0.2 eV moderately insulating ρ_{xx} up to 0.1 Ω cm 210 3D (1;000) Sb2Te2Se ? metallic heavily p-type 102 $3D (1;000)$ $Bi_2(Te, Se_2(Se, S)$ 0.3 eV semi-metallic natural Kawazulite 211 $3D (1;000)$ TIBiSe₂ $\sim 0.35 \text{ eV}$ metallic simple S.S., large gap 110–112 $3D (1;000)$ TlBiTe₂ $\sim 0.2 \text{ eV}$ metallic distorted S.S. 112 $3D (1;000)$ TIBi $(S,Se)_2$ <0.35 eV metallic topological P.T. 116, 117 $3D (1;000)$ PbBi₂Te₄ $\sim 0.2 \text{ eV}$ metallic S.S. nearly parabolic 121, 124 3D (1;000) PbSb2Te⁴ ? metallic p-type 121 3D (1;000) GeBi2Te⁴ 0.18 eV metallic n-type 102, 119, 120 $3D(1;000)$ PbBi₄Te₇ 0.2 eV metallic heavily n-type 125 3D (1;000) GeBi_{4-x}Sb_xTe₇ 0.1–0.2 eV metallic n (p) type at $x = 0$ (1) 126 $3D (1;000)$ $(PbSe)_{5}(Bi_{2}Se_{3})_{6}$ $0.5 eV$ metallic natural heterostructure 130 $3D(1:000)$ $(B_i₂)B_i₂S_{0.4})$ semimetal metallic $(B_i₂)C₂S_{0.4}$ series 127

Table I. Summary of topological insulator materials that have bee experimentally addressed. The definition of (1;111) etc. is introduced in Sect. 3.7. (In this table, S.S., P.T., and SM stand for surface state, phase transition, and semimetal, respectively.)

2 Elements of basic theory

First for QHE in continuous physical space:

Landau-operator with disordered potential

$$
H = \frac{1}{2m}(i\partial_{x_1} - eA_1)^2 + \frac{1}{2m}(i\partial_{x_2} - eA_2)^2 + \lambda V_{\text{dis}}
$$

on Hilbert space $L^2(\mathbb{R}^2)$. Landau gauge $A_1=0$ and $A_2=B X_1$

If there is no disorder $\lambda = 0$, Fourier transform in 2-direction works

$$
\mathcal{F}_2 H \mathcal{F}_2^* = \int_{\mathbb{R}}^{\oplus} d k_2 H(k_2)
$$

with $H(k_2) = H(k_2)^*$ shifted one-dimensional harmonic oscillator

 \implies infinitely degenerate so-called Landau bands.

Projection *P* on lowest band has integral kernel with Hall conductance

$$
\text{Ch}(P) = 2\pi i \langle 0|P[i[X_1, P], i[X_2, P]]|0\rangle
$$

= $\pi \int_{\mathbb{C}} dx \int_{\mathbb{C}} dy e^{-\frac{1}{2}(|x|^2 + |y|^2 - x\overline{y})} (x\overline{y} - y\overline{x}) = -1$

Effect of disorder

Typical model from i.i.d. $\omega_n \in [-1, 1]$ and $v \in C_K^{\infty}(B_1)$ with $||v||_{\infty} \leq 1$

$$
V_{\text{dis}}(x) = \sum_{n \in \mathbb{Z}^2} \omega_n v(x - n)
$$

Landau band widens by $\lambda \neq 0$. Gap closes at $\lambda \approx 1$

Expectation: all states Anderson localized, except at one energy Proof at band edges by Barbaroux, Combes, Hislop 1997, others...

Spectrum of edge states

 \hat{H}_{L} half-space restriction on $L^{2}(\mathbb{R}_{\geqslant 0}\times\mathbb{R})$ with Dirichlet

Still without disorder, Fourier transform works also for half-space:

$$
\mathcal{F}_2 \hat{H} \mathcal{F}_2^* = \int_{\mathbb{R}}^{\oplus} d k_2 \, \hat{H}(k_2)
$$

with $\widehat{H}(k_2) = \widehat{H}(k_2)^*$ cut off shifted harmonic oscillator on $L^2(\mathbb{R}_{\geqslant 0})$ Read off basic bulk-edge correspondence (right pic for generic gap)

Harper model

This is a lattice or tight-binding model on $\ell^2(\mathbb{Z}^2)$

$$
H \; = \; U_1 \, + \, U_1^* \; + \; U_2 \, + \, U_2^*
$$

Here $U_1 = S_1$ shift in 1-direction, and $U_2 = e^{iBX_1}S_2$ (Landau gauge) **Plotted:** spectrum as a function of *B* (Hofstadter's butterfly) Spectrum fractal for irrational *B*. Most gaps close with *V*dis In each gap there are edge state bands (on $\ell^2(\mathbb{Z} \times \mathbb{N}),$ Hatsugai 1993)

Coloured Hofstadter butterfly (Avron, Osadchy)

For each Fermi energy μ one has $P = \chi(H \le \mu)$

If μ in gap, then Chern number well-defined

$$
\text{Ch}(P) \ = \ 2\pi i \, \langle 0 | P[i[X_1,P],i[X_2,P]] | 0 \rangle \ \in \ \mathbb{Z}
$$

Different values, different colours

Haldane model for anomalous QHE

On honeycomb lattice = decorated triangular lattice, so on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^2$

$$
H_{\text{Hal}} = M \left(\begin{matrix} 0 & S_1^* + S_2^* + 1 \\ S_1 + S_2 + 1 & 0 \end{matrix} \right) + t_2 \sum_{j=1}^3 \left(\begin{matrix} e^{i\phi} S_j + (e^{i\phi} S_j)^* & 0 \\ 0 & e^{i\phi} S_j + (e^{i\phi} S_j)^* \end{matrix} \right)
$$

Here $S_3 = S_1 S_2$. Complex hopping, but only periodic magnetic field Then central gap with $P = \chi(H \le 0)$ and Chern number $C_1 = \text{Ch}(P)$

Kane-Mele model for SQHE

On honeycomb lattice with spin $\frac{1}{2}$, so on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^4$ ˜

$$
H_{\text{KM}} = \begin{pmatrix} H_{\text{Hal}} & 0 \\ 0 & H_{\text{Hal}} \end{pmatrix} + H_{\text{Ras}}
$$

First term comes from spin-orbit coupling to next nearest neighbors Second Rashba spin-orbit term is off-diagonal breaks chiral symmetry If $H_{\text{R}_{\text{max}}}$ small, central gap still open

Chern number vanishes (TRS), but non-trivial \mathbb{Z}_2 -invariant

This leads to edge states

Discrete symmetries (invoking real structure)

Given commuting real, skew- or selfadjoint unitaries J_{ch} , S_{tr} , S_{ph}

chiral symmetry (CHS) : $H^*_{ch} H J_{ch} = -H$ time reversal symmetry (TRS) : $S_{tr}^* \overline{H} S_{tr} = H$ particle-hole symmetry (PHS) : $\frac{1}{\rm ph} \overline{H}\, \mathcal{S}_{\rm ph} \ = \ -H$

 $S_{\text{tr}} = e^{i\pi s^y}$ orthogonal on \mathbb{C}^{2s+1} with $S_{\text{tr}}^2 = \pm \mathbf{1}$ even or odd $\mathcal{S}_{\scriptscriptstyle{\rm ph}}$ orthogonal on $\mathbb{C}_{\scriptscriptstyle{\rm ph}}^2$ with $\mathcal{S}_{\scriptscriptstyle{\rm ph}}^2=\pm\mathbf{1}$ even or odd So typical Hamiltonian acts on $\ell^2(\mathbb{Z}^d)\otimes \mathbb{C}^N\otimes \mathbb{C}^{2s+1}\otimes \mathbb{C}^2_{\textrm{\tiny ph}}$

Note: TRS + PHS \implies CHS with $J_{ch} = S_{tr}S_{ph}$

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real

Further distinction in each of the 10 classes: topological insulators

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

3 One-dimensional toy model (SSH, see [\[PS\]](#page-117-0))

Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

$$
H = \frac{1}{2}(\sigma_1 + i\sigma_2) \otimes S + \frac{1}{2}(\sigma_1 - i\sigma_2) \otimes S^* + m\sigma_2 \otimes \mathbf{1}
$$

where S bilateral shift on $\ell^2(\mathbb{Z}),\, m\in\mathbb{R}$ mass and Pauli matrices In their grading \mathcal{L} \mathbf{z}

$$
H = \begin{pmatrix} 0 & S - im \\ S^* + im & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2
$$

Off-diagonal \cong chiral symmetry $\sigma^*_3H\sigma_3=-H$. In Fourier space:

$$
H = \int_{[-\pi,\pi)}^{\oplus} dk \, H_k \qquad H_k = \begin{pmatrix} 0 & e^{-ik} - im \\ e^{ik} + im & 0 \end{pmatrix}
$$

Topological invariant for $m = -1, 1$

$$
\text{Wind}(k \in [-\pi, \pi) \mapsto e^{ik} + im) = \delta(m \in (-1, 1))
$$

Chiral bound states

Half-space Hamiltonian

$$
\hat{H} = \begin{pmatrix} 0 & \hat{S} - im \\ \hat{S}^* + im & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{N}) \otimes \mathbb{C}^2
$$

where $\widehat{\mathcal{S}}$ unilateral right shift on $\ell^2(\mathbb{N})$ Still chiral symmetry $\sigma_3^* \hat H \sigma_3 = - \hat H$

If $m = 0$, simple bound state at $E = 0$ with eigenvector $\psi_0 =$ $\langle 0 \rangle$ 0 $\ddot{}$. Perturbations, *e.g.* in *m*, cannot move or lift this bound state $\psi_m!$ Positive chirality conserved: $\sigma_3\psi_m = \psi_m$

Theorem 3.1 (Basic bulk-boundary correspondence) *If* \hat{P} projection on bound states of \hat{H} , then $\text{Wind}(k \mapsto e^{ik} + im) = \text{Tr}(\hat{P}\sigma_3)$

Disordered model

Add i.i.d. random mass term $\omega = (m_n)_{n \in \mathbb{Z}}$:

$$
H_{\omega} = H + \sum_{n \in \mathbb{Z}} m_n \sigma_2 \otimes |n \rangle \langle n|
$$

Still chiral symmetry $\sigma_3^* H_\omega \sigma_3 = - H_\omega$ so

$$
H_{\omega} = \begin{pmatrix} 0 & A_{\omega}^* \\ A_{\omega} & 0 \end{pmatrix}
$$

Bulk gap at $E = 0 \Longrightarrow A_{\omega}$ invertible

Non-commutative winding number, also called first Chern number:

$$
\text{Wind}(A) = \text{Ch}_1(A) = i \mathbf{E}_{\omega} \text{ Tr } \langle 0 | A_{\omega}^{-1} i[X, A_{\omega}] | 0 \rangle
$$

where \mathbf{E}_{ω} is average over probability measure $\mathbb P$ on i.i.d. masses

Index theorem and bulk-boundary correspondence

Theorem 3.2 (Disordered Noether-Gohberg-Krein Theorem) *If* Π *is Hardy projection on positive half-space, then* P*-almost surely* $\text{Wind}(A) = \text{Ch}_1(A) = -\text{Ind}(\Pi A_{\omega} \Pi)$

For periodic model as above, $A_\omega =$ Mult. by $e^{ik} \in C(\mathbb{S}^1)$

In this case, Fredholm operator is standard Toeplitz operator

Theorem 3.3 (Disoreded bulk-boundary correspondence) *If* \widehat{P}_ω *projection on bound states of* \widehat{H}_ω *, then* $\text{Wind}(A) = \text{Ch}_1(A) = \text{Ch}_0(\hat{P}_\omega) = \text{Tr}(\hat{P}_\omega \sigma_3)$

Structural robust result:

holds for chiral Hamiltonians with larger fiber, other disorder, etc.

Index in linear algebra

Rank theorem for $T \in Mat(N \times M, \mathbb{C})$

$$
M = \dim(\text{Ker}(T)) + \dim(\text{Ran}(T))
$$

=
$$
\dim(\text{Ker}(T)) + \dim(\text{Ker}(T^*)^{\perp})
$$

=
$$
\dim(\text{Ker}(T)) + (N - \dim(\text{Ker}(T^*)))
$$

Hence stability of index defined by

$$
\text{Ind}(\mathcal{T}) \ = \ \text{dim}(\text{Ker}(\mathcal{T})) \ - \ \text{dim}(\text{Ker}(\mathcal{T}^*))) \ = \ \mathit{M} - \mathit{N}
$$

Homotopy invariance: under continuous perturbation $t \in \mathbb{R} \mapsto T_t$

 $t \in \mathbb{R} \mapsto \text{Ind}(\mathcal{T}_t)$ konstant

For quadratic matrices, *i.e.* $N = M$, always $\text{Ind}(T) = 0$

Index in infinite dimension

Definition 3.4

 $T \in \mathcal{B}(\mathcal{H})$ continuous Fredholm operator on \mathcal{H}

 $\iff \mathcal{T}\mathcal{H}$ closed, dim $(\text{Ker}(\mathcal{T})) < \infty$, dim $(\text{Ker}(\mathcal{T}^*)) < \infty$

Then: $Ind(T) = dim(Ker(T)) - dim(Ker(T^*))$

Theorem 3.5 (Dieudonné, Krein)

Ind *is a compactly stable homotopy invariant:*

$$
Ind(T) = Ind(T + K) = Ind(T_t)
$$

Example: shift
$$
\hat{S}: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})
$$
 by $\hat{S}\psi = (\psi_{n-1})_{n \in \mathbb{N}}$ on $\psi = (\psi_n)_{n \in \mathbb{N}}$
\n $\text{Ker}(\hat{S}) = \text{span}\{(1,0,0,\ldots)\}$, $\text{Ker}(\hat{S}) = \{0\}$

Thus $Ind(S) = 1$

Index theorems connect index to a topological invariant

Structure: Toeplitz extension (no disorder)

S bilateral shift on $\ell^2(\mathbb{Z})$, then $C^*(S) \cong C(\mathbb{S}^1)$

 $\hat{\bm{S}}$ unilateral shift on $\ell^2(\mathbb{N})$, only partial isometry with a defect:

$$
\widehat{S}^*\widehat{S} = 1 \qquad \widehat{S}\,\widehat{S}^* = 1 - |0\rangle\!\langle 0|
$$

Then $\mathsf{C}^*(\widehat{\mathsf{S}}) = \mathcal{T}$ Toeplitz algebra with exact sequence:

$$
0 \to \mathcal{K} \stackrel{i}{\hookrightarrow} \mathcal{T} \stackrel{\pi}{\to} C(\mathbb{S}^1) \to 0
$$

K-groups for C^{*}-algebra $\mathcal A$ with unitization $\mathcal A^+$:

$$
K_0(\mathcal{A}) = \{ [P] - [s(P)] : \text{ projections in some } M_n(\mathcal{A}^+) \}
$$

$$
K_1(\mathcal{A}) = \{ [U] : \text{unitary in some } M_n(\mathcal{A}^+) \}
$$

Abelian group operation: Whitney sum

Example: $K_0(\mathbb{C}) = \mathbb{Z} = K_0(\mathcal{K})$ with invariant dim (P)

Example: $K_1(C(S^1)) = \mathbb{Z}$ with invariant given by winding number

6**-term exact sequence for Toeplitz extension**

C * -algebra short exact sequence \Longrightarrow $\mathcal{K}\text{-}$ theory 6-term sequence

$$
K_0(\mathcal{K}) = \mathbb{Z} \xrightarrow{i_*} K_0(\mathcal{T}) = \mathbb{Z} \xrightarrow{\pi_*} K_0(C(\mathbb{S}^1)) = \mathbb{Z}
$$

\n
$$
\downarrow_{\text{Ind}}
$$
\n
$$
K_1(C(\mathbb{S}^1)) = \mathbb{Z} \xleftarrow{\pi_*} K_1(\mathcal{T}) = 0 \xleftarrow{i_*} K_1(\mathcal{K}) = 0
$$

 $\textsf{Here: } [\mathcal{A}]_1 \in \mathcal{K}_1(C(\mathbb{S}^1)) \text{ and } [\hat{P}\sigma_3]_0 = [\hat{P}_+]_0 - [\hat{P}_-]_0 \in \mathcal{K}_0(\mathcal{K})$ $\text{Ind}([A]_1) = [\hat{P}_+]_0 - [\hat{P}_-]_0$ (bulk-boundary for *K*-theory) $Ch_0(Ind(A)) = Ch_1(A)$ (bulk-boundary for invariants)

Disordered case: analogous

4 *K***-theory krash kourse** [\[RLL,](#page-116-0) [WO\]](#page-116-1) + Cuntz&Meyer

K-theory developed to classify vector bundles over topological space *X*

Swan-Serre Theorem: {vector bundles} \cong {projections in *M_n*(*C(X)*)}

Replace $C(X)$ by non-commutative C * -algebra ${\mathcal A}$ (no Real structures)

Definition 4.1

 $(\mathcal{A}, +, \cdot, \| . \|)$ Banach algebra over \mathbb{C} if $||AB|| \le ||A|| ||B||$, etc. Then: A is C^{*}-algebra \iff $||A^*A|| = ||A||^2$

Gelfand: commutative C^{*} algebras are $A = C_0(X)$ with spectrum X

GNS: For any state on $A \exists$ Hilbert H and representation $\pi : A \rightarrow B(H)$

Example 1: $A = \mathbb{C}$ or $A = M_n(\mathbb{C})$

Example 2: Calkin's exact sequence over a Hilbert space \mathcal{H} :

$$
0\;\to\;\mathcal{K}(\mathcal{H})\;\stackrel{i}{\hookrightarrow}\;\mathcal{B}(\mathcal{H})\;\stackrel{\pi}{\to}\;\mathcal{Q}(\mathcal{H})=\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})\;\to\;0
$$

Definition of $K_0(\mathcal{A})$

Unitization $\mathcal{A}^+ = \mathcal{A} \oplus \mathbb{C}$ of C*-algebra $\mathcal A$ by

$$
(A, t)(B, s) = (AB + As + Bt, ts)
$$
, $(A, t)^* = (A^*, \overline{t})$

There is natural C^{*}-norm $\|(A, t)\|$. Unit **1** = $(0, 1) \in \mathcal{A}^+$

Exact sequence of C^{*}-algebras $0 \to \mathcal{A} \stackrel{i}{\hookrightarrow} \mathcal{A}^+ \stackrel{\rho}{\to} \mathbb{C} \to 0$

 ρ has right inverse $i'(t) = (0, t)$, then $\boldsymbol{s} = i' \circ \rho : \mathcal{A}^+ \to \mathcal{A}^+$ scalar part

$$
\mathcal{V}_0(\mathcal{A}) \ = \ \left\{ \ V \in \bigcup_{n \geqslant 1} M_{2n}(\mathcal{A}^+) \ : \ V^* \ = \ V \ , \quad V^2 \ = \ 1 \ , \quad s(V) \sim_0 E_{2n} \right\}
$$

where $s(V) \sim_0 E_{2n}$ means homotopic to $E_{2n} = E_2^{\oplus^n}$ with $E_2 = 0$ $(1 \ 0)$ $0 - 1$ Equivalence relation \sim_0 on $\mathcal{V}_0(\mathcal{A})$ by homotopy and $V\sim_0$ ` *V* 0 0 *E*² ˘ Then $K_0(\mathcal{A}) = \mathcal{V}_0(\mathcal{A}) / \sim_0$ abelian group via $[V]_0 + [V']_0 = \begin{bmatrix} \begin{pmatrix} V & 0 \\ 0 & V' \end{pmatrix} \end{bmatrix}$ 0 *V*1 lo

Definition of $K_0(A)$ is equivalent to standard one via $V = 2P - 1$:

$$
\mathcal{K}_0(\mathcal{A}) \cong \widehat{\mathcal{K}}_0(\mathcal{A}) = \{ [P] - [s(P)] : \text{ projections in some } \mathcal{M}_n(\mathcal{A}^+) \}
$$

Theorem 4.2 (Stability of K_0) $K_0(\mathcal{A}) = K_0(M_n(\mathcal{A})) = K_0(\mathcal{A} \otimes \mathcal{K})$

Example 1: $K_0(\mathbb{C}) = K_0(\mathcal{K}) = \mathbb{Z}$, invariant dim $(P) = \dim(\text{Ker}(V - 1))$ **Example 2:** $K_0(\mathcal{B}(\mathcal{H})) = 0$ for every separable H by [\[RLL\]](#page-116-0) 3.3.3 **Example 3:** $K_0(C(S^1)) = \mathbb{Z}$ and $K_0(\mathcal{T}) = \mathbb{Z}$ for Toeplitz (also dim) Dimensions are examples of invariants, *e.g.* used for gap-labelling:

Theorem 4.3 (0-cocyles paired with $K_0(A)$)

If \mathcal{T} *tracial state on all A, then class map* \mathcal{T} : $K_0(\mathcal{A}) \to \mathbb{R}$ *defined by*

$$
\mathcal{T}[V]_0 = \mathcal{T}(P) = \frac{1}{2}\mathcal{T}(V+1)
$$

Definition of $K_1(\mathcal{A})$

For definition of $K_1(\mathcal{A})$ set

$$
\mathcal{V}_1(\mathcal{A}) = \left\{ U \in \bigcup_{n \geq 1} M_n(\mathcal{A}^+) : U^{-1} = U^* \right\}
$$

Equivalence relation \sim_1 by homotopy and $U \sim_1 (\begin{smallmatrix} U & 0 \ 0 & 1 \end{smallmatrix})$ 0 **1** ˘ Then $K_1(\mathcal{A}) = \mathcal{V}_1(\mathcal{A}) / \sim_1$ with addition $[U]_1 + [U']_1 = [U \oplus U']_1$ If A unital, one can work with $M_n(\mathcal{A})$ instead of $M_n(\mathcal{A}^+)$ in $\mathcal{V}_1(\mathcal{A})$ **Example 1:** $K_1(\mathbb{C}) = K_1(\mathcal{K}) = 0$ **Example 2:** $K_1(C(S^1)) = \mathbb{Z}$ with invariant "winding number" **Example 3:** $K_1(\mathcal{A}^+) = K_1(\mathcal{A})$ **Example 4:** $K_1(\mathcal{B}(\mathcal{H})) = 0$ by Kuipers' theorem (holds for all W^{*}'s)

Example 5: For Calkin $K_1(\mathcal{Q}(\mathcal{H})) = \mathbb{Z}$ with invariant $=$ Noether index

Suspension and Bott map

Definition 4.4

Suspension of a C^{*}-algebra $\mathcal A$ is the C^{*}-algebra $\mathcal{SA} = C_0(\mathbb R)\otimes \mathcal A$

Alternatively upon rescaling: $S \mathcal{A} \cong C_0((0,1), \mathcal{A})$

Theorem 4.5 (Suspension)

One has an isomorphism $\Theta : K_1(\mathcal{A}) \to K_0(S\mathcal{A})$ *, described below*

Theorem 4.6 (Bott map)

One has isomorphism β *:* $K_0(\mathcal{A}) \cong \widehat{K}_0(\mathcal{A}) \to K_1(S\mathcal{A})$ *given by*

$$
\beta([P]_0 - [s(P)]_0) = [t \in (0,1) \mapsto (1 - P) + e^{2\pi i t} P]_1
$$

Note that r.h.s. indeed a unitary in $(\mathcal{S}\mathcal{A})^+$

Korollar 4.7 (Bott periodicity)

 $K_0(SSA) = K_0(A)$

Construction of Θ^{-1} : $K_0(SA) \to K_1(A)$ with adiabatic evolution:

$$
0 \longrightarrow S\mathcal{A} \stackrel{i}{\longrightarrow} C(\mathbb{S}^1, \mathcal{A}) \stackrel{\text{ev}}{\longrightarrow} \mathcal{A} \longrightarrow 0
$$

After rescaling is given a loop $t\in [0, 2\pi) \mapsto P_t = \frac{1}{2}$ $\frac{1}{2}(V_t + 1) \in M_N(\mathcal{A})$ With P_0 viewed as constant loop, $[P]_0 - [P_0]_0 \in K_0(SA)$ Indeed $ev([P]_0 - [P_0]_0) = 0$ so identified with element in $K_0(SA)$ Aim: find preimage under Θ in $K_1(\mathcal{A})$

For $H_t = H_t^* \in M_N(\mathcal{A})$ satisfying $[H_t, P_t] = 0$ unitary solution $U_t \in \mathcal{A}^+$ of

$$
i \partial_t U_t = (H_t + i[\partial_t P_t, P_t]) U_t, \qquad U_0 = \mathbf{1}_N
$$

Then $P_t = U_t P_0 U_t^*$ and $U_{2\pi} P_0 U_{2\pi}^* = P_0$

$$
\Theta^{-1}([P]_0 - [P_0]_0) = [P_0 U_{2\pi} P_0 + \mathbf{1}_N - P_0]_1
$$

R.h.s. is unitary! Choice of *H^t* determines lift. Details in [PS] l

Natural push-forwards maps in *K***-theory**

Associated to an exact sequence of C˚ -algebras

$$
0 \to \mathcal{K} \stackrel{i}{\hookrightarrow} \mathcal{A} \stackrel{\pi}{\to} \mathcal{Q} \to 0
$$

there are natural push-forward maps:

$$
i_* : K_j(\mathcal{K}) \to K_j(\mathcal{A})
$$
, $\pi_* : K_j(\mathcal{A}) \to K_j(\mathcal{Q})$

given $i_*[V]_0 = [i(V)]_0$, $\pi_*[V]_0 = [\pi(V)]_0$, etc.

 $Ker(\pi_*) = Ran(i_*)$, so short exact sequences of abelian groups:

$$
K_0(\mathcal{K}) \stackrel{i_*}{\rightarrow} K_0(\mathcal{A}) \stackrel{\pi_*}{\rightarrow} K_0(\mathcal{Q})
$$

and

$$
K_1(\mathcal{Q}) \stackrel{\pi_*}{\leftarrow} K_1(\mathcal{A}) \stackrel{j_*}{\leftarrow} K_1(\mathcal{K})
$$

Connecting maps close diagram to a cyclic 6-term diagram

Connecting maps from $K_i(\mathcal{Q})$ to $K_{i+1}(\mathcal{K})$

Definition 4.8 (Exponential map: $K_0(\mathcal{Q}) \to K_1(\mathcal{K})$)

Let $B = B^* \in M_n(\mathcal{A}^+)$ be contraction lift of unitary $V = V^* \in M_n(\mathcal{Q}^+)$

$$
\begin{aligned} \text{Exp}[V]_0 \ &= \left[\exp \left(2\pi i \left(\frac{1}{2} (B + 1) \right) \right) \right]_1 \\ &= \left[-\cos(\pi B) - i \sin(\pi B) \right]_1 \\ &= \left[2B\sqrt{1 - B^2} + i \left(1 - 2B^2 \right) \right]_1 \end{aligned}
$$

Definition 4.9 (Index map: $K_1(\mathcal{Q}) \to K_0(\mathcal{K})$)

Let $B \in M_n(\mathcal{A}^+)$ be contraction lift of unitary $U \in M_n(\mathcal{Q}^+)$, namely $\pi^+(B) = U$ and $\|B\| \leqslant 1.$ Then define

$$
\mathrm{Ind} [U]_1 \ = \ \left[\begin{pmatrix} 2BB^* - 1 & 2B\sqrt{1 - B^*B} \\ 2B^*\sqrt{1 - BB^*} & 1 - 2B^*B \end{pmatrix} \right]_0
$$
Index map versus index of Fredholm operator

B unitary up to compact on $H \iff \mathbf{1} - B^*B$, $\mathbf{1} - BB^* \in \mathcal{K}(\mathcal{H})$ \implies *B* Fredholm operator and $U = \pi(B) \in \mathcal{Q}(\mathcal{H})$ unitary Fedosov formula if $1 - B^*B$ and $1 - BB^*$ are traceclass:

$$
\begin{aligned} \text{Ind}(B) &= \dim(\text{Ker}(B)) - \dim(\text{Ker}(B^*)) \\ &= \text{Tr}(\mathbf{1} - B^*B) - \text{Tr}(\mathbf{1} - BB^*) \\ &= \text{Tr}\begin{pmatrix} BB^* - \mathbf{1} & B(\mathbf{1} - B^*B)^{\frac{1}{2}} \\ (\mathbf{1} - B^*B)^{\frac{1}{2}}B^* & \mathbf{1} - B^*B \end{pmatrix} \\ &= \frac{1}{2}\text{Tr}(V - E_2) \qquad \text{with } V \text{ as above} \\ &= \frac{1}{2}\text{Tr}(\text{Ind}[U]_1 - E_2) \end{aligned}
$$

Hence there is a connection...

6**-term exact sequence**

Theorem 4.10

For every $0 \to K \stackrel{i}{\hookrightarrow} A \stackrel{\pi}{\to} Q \to 0$, above definitions lead to

$$
K_0(\mathcal{K}) \xrightarrow{i_*} K_0(\mathcal{A}) \xrightarrow{\pi_*} K_0(\mathcal{Q})
$$
\n
$$
\downarrow \text{End}
$$
\n
$$
K_1(\mathcal{Q}) \xleftarrow{\pi_*} K_1(\mathcal{A}) \xleftarrow{i_*} K_1(\mathcal{K})
$$

Proof in the books...

Example 4.11

Toeplitz extension $0 \to \mathcal{K}(\ell^2(\mathbb{N})) \stackrel{i}{\hookrightarrow} \mathcal{T} \stackrel{\pi}{\to} C(\mathbb{S}^1) \to 0$ Bilateral shift $S \in C(\mathbb{S}^1)$ gives class $[S]_1 \in K_1(C(\mathbb{S}^1))$ Contraction lift is unilateral shift $\widehat{S} \in \mathcal{T} \subset \mathcal{B}(\ell^2(\mathbb{N}))$ with $\widehat{S}\widehat{S}^* = \mathbf{1} - P_0$ From definition $\text{Ind}[S]_1 = [\text{diag}(1 - 2P_0, -1)]_0$

Exact sequence of the sphere

$$
\mathbb{D}^{d+1} \ \subset \ \overline{\mathbb{D}^{d+1}} \qquad , \qquad \partial \, \overline{\mathbb{D}^{d+1}} \ = \ \mathbb{S}^d
$$

leads to an exact sequence of C˚ -algebras

$$
0 \to C_0(\mathbb{D}^{d+1}) \cong C_0(\mathbb{R}^{d+1}) \stackrel{i}{\hookrightarrow} C(\overline{\mathbb{D}^{d+1}}) \stackrel{\pi}{\to} C(\mathbb{S}^d) \to 0
$$

All *K*-groups are well-known [\[WO\]](#page-116-0). For for $d = 2n + 1$ odd

while for $d = 2n$ even

Aim: analyze one of the connecting maps, say Ind for *d* odd

Bott element

Let us write out Ind : $K_1(C(\mathbb{S}^{2n-1})) = \mathbb{Z} \to K_0(C_0(\mathbb{D}^{2n})) = \mathbb{Z}$ For $n = 1$, generator is function $z : \mathbb{S}^1 \to \mathbb{S}^1$ with unit winding number

Lift is $z : \overline{\mathbb{D}^2} \to \overline{\mathbb{D}^2}$ which is *not* invertible, but a contraction

Bott element is "the" non-trivial self-adjoint unitary on \mathbb{D}^2 :

$$
\text{Ind}([z]_1) = \left[\begin{pmatrix} 2|z|^2 - 1 & 2z\sqrt{1 - |z|^2} \\ 2\overline{z}\sqrt{1 - |z|^2} & 1 - 2|z|^2 \end{pmatrix} \right]_0 \in K_0(\mathcal{C}(\mathbb{D}^2))
$$

For higher odd *d*, irrep $\gamma_1, \ldots, \gamma_d$ of Clifford \mathbb{C}_d . Generator of $K_1(\mathbb{S}^d)$

$$
U = \sum_{j=1,...,d} x_j \, \gamma_j \, + \, i \, x_{d+1} \qquad , \qquad x = (x_1, \ldots, x_{d+1}) \in \mathbb{S}^d
$$

Lift $B \in C(\overline{\mathbb{D}^{d+1}})$ same formula with $x \in \overline{\mathbb{D}^{d+1}}$. Then with $r = \|x\|$

$$
\text{Ind}[U]_1 = \left[\begin{pmatrix} 2r^2 - 1 & 2(1 - r^2)^{\frac{1}{2}}B \\ 2B^*(1 - r^2)^{\frac{1}{2}} & -(2r^2 - 1) \end{pmatrix} \right]_0
$$

Another connecting map (for Floquet systems)

Theorem 4.12 (with Sadel)

 $0 \to \mathcal{K} \stackrel{\imath}{\hookrightarrow} \mathcal{A} \stackrel{\pi}{\to} \mathcal{Q} \to 0$

Recall Ind : $K_1(SQ) \to K_0(SK)$ and Θ^{-1} : $K_0(SK) \to K_1(K)$, so

 $\Theta^{-1} \circ \text{Ind} : K_1(\mathcal{SQ}) \to K_1(\mathcal{K})$

Given smooth path $(0, 2\pi) \mapsto U(t) \in \mathcal{Q}$ *specifying class* $K_1(S\mathcal{Q})$

$$
\Theta^{-1}(\mathrm{Ind}([(0,2\pi)\mapsto U(t)]_1)) = [\hat{U}(2\pi)]_1
$$

where $\hat{U}(2\pi) - \mathbf{1} \in \mathcal{K}$ *is end point of initial value problem in* A

$$
i \partial_t \widehat{U}(t) = \widehat{H}(t) \widehat{U}(t) \qquad \widehat{U}(0) = 1
$$

associated to self-adjoint lift $\widehat{H}(t) \in \mathcal{A}$ *of* $H(t) = -i \ U(t) \partial_t U(t)^* \in \mathcal{Q}$

5 Observable algebra for tight-binding models

One-particle Hilbert space $\ell^2(\mathbb{Z}^d)\otimes \mathbb{C}^L$

Fiber $\mathbb{C}^{\mathcal{L}}=\mathbb{C}^{2s+1}\otimes \mathbb{C}^r$ with spin *s* and *r* internal degrees e.g. $\mathbb{C}^{\prime}=\mathbb{C}_{\textrm{\tiny ph}}^{2}\otimes\mathbb{C}_{\textrm{\tiny sl}}^{2}$ particle-hole space and sublattice space Typical Hamiltonian

$$
H_{\omega} = \Delta^{B} + W_{\omega} = \sum_{i=1}^{d} (t_i^* S_i^B + t_i (S_i^B)^*) + W_{\omega}
$$

Magnetic translations $S^B_j S^B_i = e^{iB_{i,j}} S^B_i S^B_j$ in Laudau gauge:

$$
S_1^B=S_1 \qquad S_2^B=e^{iB_{1,2}X_1}S_2 \qquad S_3^B=e^{iB_{1,3}X_1+iB_{2,3}X_2}S_3
$$

 t_i matrices $L \times L$, e.g. spin orbit coupling, (anti)particle creation matrix potential $\textit{W}_{\omega} = \textit{W}_{\omega}^* = \sum_{n \in \mathbb{Z}^d} ~|n\rangle \omega_n \langle n|$ with i.i.d. matrices ω_n Configurations $\omega = (\omega_n)_{n \in \mathbb{Z}^d} \in \Omega$ compact probability space (Ω, \mathbb{P}) ${\mathbb P}$ invariant and ergodic w.r.t. $\mathcal{T}:\mathbb Z^d \times \Omega \to \Omega$

Covariant operators (generalizes periodicity)

Covariance w.r.t. to dual magnetic translations $V_a = S^B_j V_a (S^B_j)^*$

$$
V_a H_{\omega} V_a^* = H_{T_{a} \omega} \qquad , \qquad a \in \mathbb{Z}^d
$$

 $\|\pmb{A}\| = \sup_{\omega \in \Omega} \|\pmb{A}_{\omega}\|$ is C^* -norm on

 $\mathcal{A}_{\boldsymbol{d}} \; = \; \mathrm{C}^* \left\{ \boldsymbol{A} = (\boldsymbol{A}_{\omega})_{\omega \in \Omega} \text{ finite range covariant operators} \right\}$ \cong twisted crossed product $C(\Omega) \rtimes_B \mathbb{Z}^d$

Fact: Suppose Ω contractible (say ω*ⁿ* from matrix ball) \Longrightarrow rotation algebra $\mathsf{C}^*(\mathcal{S}_1^{\mathcal{B}}, \dots, \mathcal{S}_d^{\mathcal{B}})$ is deformation retract of \mathcal{A}_a **In particular:** K -groups of $C^*(S_1^B, \ldots, S_d^B)$ and \mathcal{A}_d coincide

Theorem 5.1 (Pimsner-Voiculescu 1980) $K_0(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$ and $K_1(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$

Generators of $K_i(\mathcal{A}_d)$ from PV's Toeplitz extension

 $0 \to \mathcal{A}_{d-1} \otimes \mathcal{K} \to \mathcal{T}(\mathcal{A}_{d+1}) \to \mathcal{A}_d \to 0$ gives $K(\mathcal{T}(\mathcal{A}_{d+1})) = K(\mathcal{A}_{d-1})$ and $0 \rightarrow K_0(\mathcal{A}_{d-1}) \stackrel{i_*}{\rightarrow} K_0(\mathcal{A}_d) \stackrel{\text{Exp}}{\rightarrow} K_1(\mathcal{A}_{d-1}) \rightarrow 0$ $0 \rightarrow K_1(\mathcal{A}_{d-1}) \stackrel{i_*}{\rightarrow} K_1(\mathcal{A}_d) \stackrel{\text{Ind}}{\rightarrow} K_0(\mathcal{A}_{d-1}) \rightarrow 0$ Both lines read $K_j(\mathcal{A}_d) = K_0(\mathcal{A}_{d-1}) \oplus K_1(\mathcal{A}_{d-1}) = \mathbb{Z}^{2^{d-2}} \oplus \mathbb{Z}^{2^{d-2}}$ Iterative construction of generators using inverse of Ind and Exp Explicit generators $[\bm{G}_{l}]$ of K -groups labelled by subsets $\bm{l} \subset \{1, \dots, \bm{d}\}$ *Top generator* $I = \{1, ..., d\}$ identified with Bott in $K_j(C(\mathbb{S}^d))$ **Example** $G_{\{1,2\}}$ Powers-Rieffel projection in $C^*(S_1^B,S_2^B)$ In general, any projection $P \in M_n(\mathcal{A}_d)$ can be decomposed as

$$
[P]_0 = \sum_{l \subset \{1,\ldots,d\}} n_l [G_l]_0 \qquad n_l \in \mathbb{Z}, |l| \text{ even}
$$

Questions: calculate $n_l = c_l \text{Ch}_l(P)$ and give physical significance

*K***-group elements of physical interest**

Fermi level $\mu \in \mathbb{R}$ in spectral gap of H_{ω}

 $P_{\omega} = \chi(H_{\omega} \le \mu)$ covariant Fermi projection

Hence: $P = (P_{\omega})_{\omega \in \Omega} \in A_d$ fixes element in $[P]_0 \in K_0(A_d)$

If chiral symmetry present: Fermi unitary $U = A|A|^{-1}$ from

$$
H_{\omega} = -J_{\text{ch}}^* H_{\omega} J_{\text{ch}} = \begin{pmatrix} 0 & A_{\omega} \\ A_{\omega}^* & 0 \end{pmatrix} , \qquad J_{\text{ch}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

If $\mu = 0$ in gap, $A = (A_\mu)_{\mu \in \Omega} \in A_d$ invertible and $[U]_1 = [A]_1 \in K_1(A_d)$

Remark Sufficient to have an approximate chiral symmetry

$$
H_{\omega} = \begin{pmatrix} B_{\omega} & A_{\omega} \\ A_{\omega}^* & C_{\omega} \end{pmatrix}
$$

with invertible *A*_ω

Strong and weak invariants in *K***-theory terms**

Fermi level $\mu \implies$ Fermi projection *P* or Fermi unitary *A* **Decompositions**

$$
[P]_0 = \sum_{l \in \{1, ..., d\}} n_l [G_l]_0 , \qquad [A]_1 = \sum_{l \in \{1, ..., d\}} n_l [G_l]_1
$$

Invariants n_l , top invariant $n_{\{1,\ldots,d\}} \in \mathbb{Z}$ called *strong*, others weak A systems with $n_{\{1,...,d\}}+0$ is called a strong topological insulator If $n_{\{1,...,d\}}=0,$ but some other $n_l\neq 0,$ weak topological insulator For Class A (no symmetry) and Class AIII (chiral symmetry):

Z-entries are parts of the *K*-groups. Calculation of number next

Non-commutative analysis tools [\[BES,](#page-117-0) [PS\]](#page-117-1)

Definition 5.2 (Non-commutative integration and derivatives) Tracial state T on A_d given by

 $\mathcal{T}(\mathcal{A}) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{\mathcal{L}} \langle 0 | \mathcal{A}_{\omega} | 0 \rangle$

Derivations $\nabla = (\nabla_1, \dots, \nabla_d)$ densely defined by

 $\nabla_j A_\omega = i[X_j, A_\omega]$

Then define $C^k(\mathcal{A})$, $C^{\infty}(\mathcal{A})$, etc.

Usual rules: $\mathcal{T}(AB) = \mathcal{T}(BA)$, $\nabla(AB) = \nabla(A)B + A\nabla(B)$, *etc.* Also: $\mathcal{T}(\nabla(A)) = 0$, so partial integration $\mathcal{T}(\nabla(A)B) = -\mathcal{T}(A\nabla(B))$

Proposition 5.3 (Birkhoff theorem for translation group)

^T *is* ^P*-almost surely the trace per unit volume*

$$
\mathcal{T}(A) = \lim_{\Lambda \to \mathbb{Z}^d} \frac{1}{|\Lambda|} \sum_{n \in \Lambda} \text{Tr}_L \langle n | A_{\omega} | n \rangle
$$

Periodic systems

For simplicity 1-periodic in all directions and no magnetic field Then $\mathcal{A}_d = C(\mathbb{T}^d) \otimes \mathbb{C}^{L \times L}$ commutative up to matrix degree

With dictionary: rewrite many formulas from solid state literature **Example:** Kubo formula for conductivity at relaxation time π

$$
\int dk \sum_{n,m} \text{Tr} \left(\partial_{k_i} (f_{\beta,\mu}(E_n(k)) P_n(k)) \left(E_n(k) - E_m(k) + \frac{1}{\tau} \right)^{-1} \partial_{k_j} (E_m(k) P_m(k)) \right)
$$

= $\mathcal{T} \left(\nabla_i (f_{\beta,\mu}(H)) \left(\mathcal{L}_H + \frac{1}{\tau} \right)^{-1} (\nabla_j(H)) \right)$

where $\mathcal{L}_H = i[H, .]$ Liouville operator

6 Topological invariants in solid state systems

 $A \in \mathcal{A}_d$ invertible and |*I*| odd with $\rho : \{1, \ldots, |I|\} \rightarrow I$ and $sig(\rho) = (-1)^{\rho}$:

$$
\mathrm{Ch}_I(A) \; = \; \frac{i(i\pi)^{\frac{|I|-1}{2}}}{|I|!!} \; \sum_{\rho \in S_I} (-1)^\rho \; \mathcal{T}\left(\prod_{j=1}^{|I|} A^{-1} \nabla_{\rho_j} A\right) \in \; \mathbb{R}
$$

where $\mathcal{T}(A) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L} \langle 0 | A_{\omega} | 0 \rangle$ and $\nabla_{j} A_{\omega} = i[X_{j}, A_{\omega}]$ For even |*I*| and projection $P \in \mathcal{A}_d$:

$$
Ch_I(P) = \frac{(2i\pi)^{\frac{|I|}{2}}}{\frac{|I|}{2}!} \sum_{\rho \in S_I} (-1)^{\rho} \mathcal{T}\left(P \prod_{j=1}^{|I|} \nabla_{\rho_j} P\right) \in \mathbb{R}
$$

Theorem 6.1 (Connes 1985, [\[Con\]](#page-116-1))

 $Ch_I(A)$ *and* $Ch_I(P)$ *homotopy invariants; pairings with* $K(A_d)$

Rewriting

Let *d* be even and \mathbb{C}_d complex Clifford generated by $\gamma_1, \ldots, \gamma_d$ Extend A_d to $A_d \otimes \mathbb{C}_d$ so that degree of form can be counted Exterior derivatives are $dA \otimes v = \sum_{i=1}^{d}$ $\int_{j=1}^{\alpha} \nabla_j A \otimes \gamma_j \nu$

Finally let
$$
\text{ev}(\gamma_1 \cdots \gamma_j) = \delta_{j,d}
$$

Then

$$
\mathrm{Ch}_{\{1,\ldots,d\}}(P) = \frac{(2i\pi)^{\frac{|I|}{2}}}{\frac{|I|}{2}!} \mathcal{T} \circ \mathrm{ev}\left(PdP\cdots dP\right)
$$

Special case $d = 2$ gives "first" Chern number:

$$
\begin{aligned} \text{Ch}_{\{1,2\}}(P) &= 2\pi i \mathcal{T} \circ \text{ev}\left(\mathit{PdPdP}\right) \\ &= 2\pi i \mathcal{T}\left(\mathit{P}[\nabla_1 P, \nabla_2 P]\right) \\ &= 2\pi i \int_{\mathbb{T}^2} \frac{dk}{(2\pi)^2} \operatorname{Tr}\left(\mathit{P}(k)[\partial_1 \mathit{P}(k), \partial_2 \mathit{P}(k)]\right) \end{aligned}
$$

where
$$
P = \int_{\mathbb{T}^2}^{\oplus} dK P(k)
$$

Link to Volovik-Essin-Gurarie invariants

Express the invariants in terms of Green function/resolvent Consider path *z* : $[0, 1] \rightarrow \mathbb{C} \setminus \sigma(H)$ encircling $(-\infty, \mu] \cap \sigma(H)$ Set

$$
G(t) = (H - z(t))^{-1}
$$

Theorem 6.2 ([\[PS\]](#page-117-1))

For $|I|$ *even and with* $\nabla_0 = \partial_t$,

$$
\mathrm{Ch}_I(P_\mu) \, = \, \frac{(i\pi)^{\frac{|I|}{2}}}{i(|I|-1)!!} \sum_{\rho \in S_{I\cup\{0\}}} (-1)^\rho \!\int_0^1 \! dt \, \mathcal{T} \left(\prod_{j=0}^{|I|} G(t)^{-1} \nabla_{\rho_j} G(t) \right)
$$

Isomorphism via Bott map β : $K_0(\mathcal{A}_d) \to K_1(S\mathcal{A}_d)$ leads to " ‰

$$
\beta[P_\mu]_0 = [t \in [0,1] \mapsto G(t)]_1
$$

Combine with suspension result on cyclic cohomology side Similar results for odd pairings

Generalized Streda formulæ

In QHE: integrated density of states grows linearly in magnetic field

integrated density of states: $E \langle 0|P|0 \rangle = Ch_{\emptyset}(P)$

$$
\partial_{B_{1,2}} \text{Ch}_{\emptyset}(P) = \frac{1}{2\pi} \text{Ch}_{\{1,2\}}(P)
$$

Theorem 6.3 (Elliott 1984, [\[PS\]](#page-117-1))

$$
\partial_{B_{i,j}} \text{Ch}_I(P) = \frac{1}{2\pi} \text{Ch}_{I \cup \{i,j\}}(P) \qquad |I| \text{ even, } i, j \notin I
$$

$$
\partial_{B_{i,j}} \text{Ch}_I(A) = \frac{1}{2\pi} \text{Ch}_{I \cup \{i,j\}}(A) \qquad |I| \text{ odd, } i, j \notin I
$$

Application: magneto-electric effects in $d = 3$

Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. *B* given by $\mathrm{Ch}_{\{1,2,3,4\}}(P)$

Index theorem for strong invariants and odd *d*

 γ_1,\ldots,γ_d irrep of Clifford C_d on $\mathbb{C}^{2^{(d-1)/2}}$

 $D =$ ÿ *d j*=1 $X_j\otimes \textbf{1}\otimes \gamma_j$ Dirac operator on $\ell^2(\mathbb{Z}^d)\otimes \mathbb{C}^L\otimes \mathbb{C}^{2^{(d-1)/2}}$

Dirac phase $F = \frac{D}{\vert D \vert}$ $\frac{D}{|D|}$ provides odd Fredholm module on $\mathcal{A}_{\bm{d}}$:

 $F^2 = 1$ [*F*, *A*_ω] compact and in $\mathcal{L}^{d+\epsilon}$ für $A = (A_\omega)_{\omega \in \Omega} \in \mathcal{A}_d$

Theorem 6.4 (Local index = generalizes Noether-Gohberg-Krein) Let $\Pi = \frac{1}{2}$ $\frac{1}{2}$ (F + **1**) be Hardy projection for F. For invertible A_ω

$$
Ch_{\{1,\ldots,d\}}(A) = Ind(\Pi A_{\omega} \Pi)
$$

The index is P -almost surely constant.

Proof based on key geometric identities

Let $d = 2k + 1$ Given $x_1, \ldots, x_{2k+2} \in \mathbb{R}^{2k+1}$ with x_{2k+2} fixed at the origin $\gamma_1,\ldots,\gamma_{2k+1}$ irrep on \mathbb{C}^{2^k} of complex Clifford Cl_{2k+1}

$$
\int_{\mathbb{R}^{2k+1}} dx \operatorname{tr} \Big(\prod_{j=1}^{2k+1} \big(\operatorname{sgn} \langle \gamma, x_j + x \rangle - \operatorname{sgn} \langle \gamma, x_{j+1} + x \rangle \big) \Big) \n= - \frac{2^{2k+1} (i\pi)^k}{(2k+1)!!} \sum_{\rho \in S_{2k+1}} (-1)^{\rho} \prod_{j=1}^{2k+1} x_{j, \rho_j}
$$

For $d = 1$: standard element in Noether-Gohberg-Krein Analog for $d = 2$: Connes' triangle equality

Alternative proof: semifinite index theory (Andersen, Bourne-SB)

Local index theorem for even dimension *d*

As above $\gamma_1, \ldots, \gamma_d$ Clifford, grading $\Gamma = -i^{-d/2}\gamma_1 \cdots \gamma_d$ $\textsf{Dirac}\ D=-\textsf{\textsf{F}}\ D\Gamma=|D|\left(\begin{array}{cc} 0 & F\ -F^* & 0\end{array}\right)$ *F* ˚ 0 even Fredholm module

Theorem 6.5 (Connes $d = 2$, Prodan, Leung, Bellissard 2013) *Almost sure index* Ind $(P_\omega\mathit{FP}_\omega)$ *equal to* $\mathrm{Ch}_{\{1,...,d\}}(P)$

Special case $d = 2$: $F = \frac{X_1 + iX_2}{|X_1 + iX_2|}$ $\frac{X_1 + iX_2}{|X_1 + iX_2|}$ and $\text{Ind}(P_{\omega}FP_{\omega}) = 2\pi i \mathcal{T}(P[[X_1, P],[X_2, P]])$

Proof: again geometric identity of high-dimensional simplexes **Advantages:** phase label also for dynamical localized regime implementation of discrete symmetries (CPT)

Numerical technique for strong invariants

H chiral with Fermi unitary *A*. For tuning parameter $\kappa > 0$ introduce:

$$
L_{\kappa} = H + \kappa \begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix}
$$
 spectral localizer

*A*_{o} restriction of *A* (Dirichlet b.c.) to range of χ ($|D| \le \rho$)

$$
L_{\kappa,\rho} = \begin{pmatrix} \kappa D_{\rho} & A_{\rho} \\ A_{\rho}^{*} & -\kappa D_{\rho} \end{pmatrix}
$$

Clearly selfadjoint matrix:

$$
(L_{\kappa,\rho})^*~=~L_{\kappa,\rho}
$$

Fact 1: $L_{\kappa,o}$ is gapped, namely 0 $\notin L_{\kappa,o}$ **Fact 2:** *L_{K, 0}* has spectral asymmetry measured by signature **Fact 3:** signature linked to topological invariant

Theorem 6.6 (with Loring 2017)

Given D = D^* *with compact resolvent and invertible A* with invertibility gap $g = \|A^{-1}\|^{-1}$. Provided that

$$
\|[D,A]\| \leqslant \frac{g^3}{12\|A\|\kappa}
$$

and

$$
\frac{2g}{\kappa} \leqslant \rho \tag{**}
$$

(*)

the matrix L_{κ,ρ} is invertible and with $\Pi = \chi(D \ge 0)$

$$
\frac{1}{2} \operatorname{Sig}(L_{\kappa,\rho}) = \operatorname{Ind}(\Pi A \Pi + (\mathbf{1} - \Pi))
$$

How to use: form [\(*\)](#page-56-0) infer κ , then ρ from [\(**\)](#page-56-1)

If *A* unitary,
$$
g = ||A|| = 1
$$
 and $\kappa = (12||[D, A]]|)^{-1}$ and $\rho = \frac{2}{\kappa}$

Hence **small** matrix of size ≤ 100 sufficient! Great for numerics!

Why it can work:

Proposition 6.7

If [\(*\)](#page-56-0) *and* [\(**\)](#page-56-1) *hold,*

$$
L^2_{\kappa,\rho}\,\geq\,\frac{g^2}{2}
$$

 \overline{c}

Proof:

$$
L^2_{\kappa,\rho} = \begin{pmatrix} A_{\rho}A_{\rho}^* & 0 \\ 0 & A_{\rho}^*A_{\rho} \end{pmatrix} + \kappa^2 \begin{pmatrix} D_{\rho}^2 & 0 \\ 0 & D_{\rho}^2 \end{pmatrix} + \kappa \begin{pmatrix} 0 & [D_{\rho}, A_{\rho}] \\ [D_{\rho}, A_{\rho}]^* & 0 \end{pmatrix}
$$

Last term is a perturbation controlled by [\(*\)](#page-56-0)

First two terms positive (indeed: close to origin and away from it) Now $A^*A\geqslant g^2,$ but $(A^*A)_\rho\,\#\,A_\rho^*A_\rho$

This issue can be dealt with by tapering argument:

Proposition 6.8 (Bratelli-Robinson)

 $\overline{\mathit{For}}~f:\mathbb{R}\to\mathbb{R}$ with Fourier transform defined without $\sqrt{2\pi},$

$$
\|[f(D),A]\|\;\leqslant\; \|\widehat{f'}\|_1\;\|[D,A]\|
$$

Lemma 6.1

$$
\exists \text{ even function } f_{\rho} : \mathbb{R} \to [0,1] \text{ with } f_{\rho}(x) = 0 \text{ for } |x| \ge \rho
$$

and $f_{\rho}(x) = 1$ for $|x| \le \frac{\rho}{2}$ such that $\|\hat{f}_{\rho}'\|_1 = \frac{8}{\rho}$

With this,
$$
f = f_\rho(D) = f_\rho(|D|)
$$
 and $\mathbf{1}_\rho = \chi(|D| \le \rho)$:

$$
A_{\rho}^* A_{\rho} = \mathbf{1}_{\rho} A^* \mathbf{1}_{\rho} A \mathbf{1}_{\rho} \ge \mathbf{1}_{\rho} A^* f^2 A \mathbf{1}_{\rho}
$$

= $\mathbf{1}_{\rho} f A^* A f \mathbf{1}_{\rho} + \mathbf{1}_{\rho} ([A^*, f] f A + f A^* [f, A]) \mathbf{1}_{\rho}$
 $\ge g^2 f^2 + \mathbf{1}_{\rho} ([A^*, f] f A + f A^* [f, A]) \mathbf{1}_{\rho}$

So indeed $A_\rho^*A_\rho$ positive close to origin Then one can conclude... but a bit tedious

Proof by spectral flow

Use Phillips' result for phase $U = A|A|^{-1}$ and properties of SF:

$$
\begin{aligned}\n\text{Ind}(\Pi A \Pi + \mathbf{1} - \Pi) &= \text{SF}(U^* D U, D) \\
&= \text{SF}(\kappa U^* D U, \kappa D) \\
&= \text{SF}\left(\begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}^* \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right) \\
&= \text{SF}\left(\begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}^* \begin{pmatrix} \kappa D & 1 \\ 1 & -\kappa D \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right) \\
&= \text{SF}\left(\begin{pmatrix} \kappa U^* D U & U \\ U^* & -\kappa D \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right) \\
&= \text{SF}\left(\begin{pmatrix} \kappa D & U \\ U^* & -\kappa D \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right)\n\end{aligned}
$$

Now localize and use SF = $\frac{1}{2}$ $\frac{1}{2}$ Sig on paths of selfadjoint matrices $\qquad \Box$

Even pairings (in even dimension)

Consider gapped Hamiltonian *H* on *H* specifying $P = \chi(H \le 0)$ Dirac operator *D* on $\mathcal{H} \oplus \mathcal{H}$ is odd w.r.t. grading $\Gamma =$ $\overline{1}$ 0 $0 - 1$ ˘ $\mathsf{Thus}\ D=-\mathsf{\Gamma} D\mathsf{\Gamma} =$ ` 0 *D*¹ $(D')^*$ 0 and Dirac phase $F=D'|D'|^{-1}$ Fredholm operator $PFP + (1 - P)$ has index = Chern number Spectral localizer \mathbf{z}

$$
L_{\kappa} = \begin{pmatrix} H & \kappa D' \\ \kappa (D')^* & -H \end{pmatrix} = H \otimes \Gamma + \kappa D
$$

Theorem 6.9 (with Loring 2018)

Suppose $\Vert [H, D'] \Vert < \infty$ and D' normal, and κ , ρ with [\(*\)](#page-56-0) and [\(**\)](#page-56-1)

$$
Ind(PFP + (1 - P)) = \frac{1}{2} Sig(L_{\kappa,\rho})
$$

Elements of proof

Definition 6.10

A fuzzy sphere (X_1, X_2, X_3) of width $\delta < 1$ in C * -algebra $\mathcal K$ is a collection of three self-adjoints in K^+ with spectrum in $[-1, 1]$ and

$$
\left\|1-(X_1^2+X_2^2+X_3^2)\right\| < \delta \qquad \qquad \left\|[X_j,X_j]\right\| < \delta
$$

Proposition 6.11

If $\delta \leqslant \frac{1}{4}$ $\frac{1}{4}$, one gets class $[L]_0 \in K_0(\mathcal{K})$ by self-adjoint invertible

$$
L = \sum_{j=1,2,3} X_j \otimes \sigma_j \in M_2(\mathcal{K}^+)
$$

Reason: *L* invertible and thus has positive spectral projection

Remark: odd-dimensional spheres give elements in $K_1(\mathcal{K})$

Proposition 6.12

$$
L_{\kappa,\rho}
$$
 homotopic to $L = \sum_{j=1,2,3} X_j \otimes \sigma_j$ in invertibles

Construction of that particular fuzzy sphere: Smooth tapering $f_{\rho} : \mathbb{R} \to [0, 1]$ with supp $(f_{\rho}) \subset [-\rho, \rho]$ as above Define $F_{\rho} : \mathbb{R} \to [0, 1]$ by

$$
F_{\rho}(x)^{4} + f_{\rho}(x)^{4} = 1
$$

If $D' = D_1 + iD_2$ with $D^*_j = D_j$, and $R = |D|$, set

$$
X_1 = F_{\rho}(R) R^{-\frac{1}{2}} D_{1,\rho} R^{-\frac{1}{2}} F_{\rho}(R)
$$

\n
$$
X_2 = F_{\rho}(R) R^{-\frac{1}{2}} D_{2,\rho} R^{-\frac{1}{2}} F_{\rho}(R)
$$

\n
$$
X_3 = f_{\rho}(R) H_{\rho} f_{\rho}(R)
$$

Theorem 6.13

$$
Ind\left[\pi(P\mathsf{F}\mathsf{P}+1-\mathsf{P})\right]_1\;=\;[L_{\kappa,\rho}]_0
$$

Proof:

General tool:

Image of *K*-theoretic index map can be written as fuzzy sphere

$$
\mathrm{Ind}[\pi(A)]_1 = \Big[\sum_{j=1,2,3} Y_j \otimes \sigma_j\Big]_0
$$

(by choosing an almost unitary lift *A*)

Formulas for Y_1 , Y_2 , Y_3 are explicit (but long)

General tool for $P F P + 1 - P$ provides fuzzy sphere (Y_1, Y_2, Y_3)

Final step: find classical degree 1 map $M:\mathbb{S}^2\to \mathbb{S}^2$ such that

$$
\textit{M}(\textit{Y}_1, \textit{Y}_2, \textit{Y}_3) \ \sim \ (\textit{X}_1, \textit{X}_2, \textit{X}_3)
$$

Numerics for toy model: $p + ip$ **superconductor**

Hamiltonian on $\ell^2({\mathbb Z}^2, {\mathbb C}^2)$ depending on μ and δ

$$
H = \begin{pmatrix} S_1 + S_1^* + S_2 + S_2^* - \mu & \delta(S_1 - S_1^* + \iota(S_2 - S_2^*)) \\ \delta(S_1 - S_1^* + \iota(S_2 - S_2^*))^* & -(S_1 + S_1^* + S_2 + S_2^* - \mu) \end{pmatrix} + \lambda V_{dis}
$$

and disorder strength λ and i.i.d. uniformly distributed entries in

$$
V_{\text{dis}} = \sum_{n \in \mathbb{Z}^2} \begin{pmatrix} v_{n,0} & 0 \\ 0 & v_{n,1} \end{pmatrix} |n \rangle \langle n|
$$

Build even spectral localizer from $D = X_1 \sigma_1 + X_2 \sigma_2 = -\sigma_3 D \sigma_3$: \mathbb{R}^2

$$
L_{\kappa,\rho} = \begin{pmatrix} H_{\rho} & \kappa (X_1 + iX_2)_{\rho} \\ \kappa (X_1 - iX_2)_{\rho} & -H_{\rho} \end{pmatrix}
$$

Calculation of signature by block Chualesky algorithm

 $\ddot{}$

 \mathbf{z}

Low-lying spectrum of spectral localizer

Energy Levels of the Spectral Localizer with disorder δ =-0.35, μ =0.25, κ =0.1, ρ =15

Level of Disorder (2

Half-signature and gaps for *p* ` *ip* **superconductor**

7 Invariants as response coefficients

- Hall conductance via Kubo formula: $\text{Ch}_{\{i,j\}}$ with $i \neq j$
- polarization for periodically driven systems: $\text{Ch}_{\{0,j\}}$ with 0 time
- ' orbital magnetization at zero temperature
- magneto-electric effect: $\text{Ch}_{\{0,1,2,3\}}$ with 0 time
- \bullet chiral polarization: Ch_{i}

Current operator $J = (J_1, \ldots, J_d)$ in *d* dimension:

$$
J = \dot{X} = i[H, X] = \nabla H
$$

Current density at equilibrium expressed by Fermi-Dirac state:

$$
j_{\beta,\mu} = \mathcal{T}(f_{\beta,\mu}(H) \mathsf{J})
$$
, $f_{\beta,\mu}(H) = (1 + e^{\beta(H-\mu)})^{-1}$

Proposition 7.1 ([\[BES\]](#page-117-0))

If
$$
H = H^* \in C^1(\mathcal{A})
$$
 and $f \in C_0(\mathbb{R})$, then $\mathcal{T}(f(H)\nabla H) = 0$

Proof: Leibniz implies $0 = \mathcal{T}(\nabla H^n) = n\mathcal{T}(H^{n-1}\nabla H)$ for all $n \geq 1$

Hence no current at equilibrium! Add external electric field $\mathcal{E} \in \mathbb{R}^d$

$$
H_{\mathcal{E}} = H + \mathcal{E} \cdot X
$$

Then H_{ε} neither bounded nor homogeneous and thus not in A Nevertheless associated time evolution remains in the algebra A In the Schrödinger picture it is governed by the Liouville equation:

$$
\partial_t \rho = -i[H_{\mathcal{E}}, \rho] = -i[H + \mathcal{E} \cdot X, \rho] = -\mathcal{L}_H(\rho) + \mathcal{E} \cdot \nabla(\rho)
$$

Now Dyson series with Liouville \mathcal{L}_H as perturbation is iteration of

$$
e^{t\mathcal{L}_{H_{\mathcal{E}}}} = e^{t\mathcal{E}\cdot\nabla} + \int_0^t ds \ e^{(t-s)\mathcal{E}\cdot\nabla}\mathcal{L}_H e^{s\mathcal{L}_{H_{\mathcal{E}}}}
$$

This shows:

Proposition 7.2

 $\pm \mathcal{L}_H + \mathcal{E} \cdot \nabla$ are generators of automorphism groups in A

Next time-averaged current under the dynamics with \mathcal{E} :

$$
j_{\beta,\mu,\mathcal{E}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ \mathcal{T}\big(f_{\beta,\mu}(H) \ e^{t\mathcal{L}_{H_{\mathcal{E}}}}(J)\big)
$$

As trace τ invariant under both ∇ and \mathcal{L}_H ,

$$
j_{\beta,\mu,\mathcal{E}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ \mathcal{T}(J e^{-t\mathcal{L}_{H_{\mathcal{E}}}}(f_{\beta,\mu}(H)))
$$

(Schrödinger picture \Longleftrightarrow Heisenberg picture). Now

Proposition 7.3 (Bloch Oscillations)

*Time-averaged current j*β,µ,^E *along direction of* E *vanishes*

Proof. $\mathcal{E} \cdot \mathcal{J}(t) = e^{t \mathcal{L}_{H_{\mathcal{E}}}}(\mathcal{E} \cdot \nabla(H)) = e^{t \mathcal{L}_{H_{\mathcal{E}}}}(\mathcal{L}_{H_{\mathcal{E}}}(H)) = \frac{dH(t)}{dt}$

Taking the time average gives us

$$
\frac{1}{T}\int_0^T dt \mathcal{E} \cdot J(t) = \frac{H(T) - H}{T}
$$

Since *H* bounded and $||H(t)|| = ||H||$, r.h.s. vanishes as $T \rightarrow \infty$

Modify dynamics by bounded linear collision term (like Boltzmann eq.):

$$
\partial_t \rho + \mathcal{L}_H(\rho) - \mathcal{E} \cdot \nabla(\rho) = -\Gamma(\rho)
$$

Main property is invariance of equilibrium: $\Gamma(f_{\beta,\mu}(H))=0$ Again Dyson series shows existence of dynamics:

$$
\rho(t) = e^{-t(\mathcal{L}_H - \mathcal{E} \cdot \nabla + \Gamma)}(\rho(0))
$$

Initial state chosen to be $\rho(0) = f_{\beta,\mu}(H)$

Exponential time-averaged current density shows:

$$
j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \delta \int_0^\infty dt \ e^{-\delta t} \ \mathcal{T}(J\rho(t))
$$

=
$$
\lim_{\delta \to 0} \delta \ \mathcal{T}\left(J \ \frac{1}{\delta + \Gamma + \mathcal{L}_H - \mathcal{E} \cdot \nabla}(f_{\beta,\mu}(H))\right)
$$

By Proposition [7.1](#page-67-1) and $(\mathcal{L}_H + \Gamma)(f_{\beta,\mu}(H)) = 0$ no current at equilibrium:

$$
0 = \delta \mathcal{T}\left(J\frac{1}{\delta}f_{\beta,\mu}(H)\right) = \delta \mathcal{T}\left(J\frac{1}{\delta + \mathcal{L}_H + \Gamma}(f_{\beta,\mu}(H))\right)
$$

Subtract this from $j_{\beta,\mu,\mathcal{E}}$ and use resolvent identity

$$
j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \mathcal{T} \left(J \frac{1}{\delta + \Gamma + \mathcal{L}_H - \mathcal{E} \cdot \nabla} \mathcal{E} \cdot \nabla \frac{\delta}{\delta + \Gamma + \mathcal{L}_H} (f_{\beta,\mu}(H)) \right)
$$

Now, again $(\mathcal{L}_H + \Gamma)(f_{\beta,\mu}(H)) = 0$,

$$
j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \sum_{j=1}^{d} \mathcal{E}_j \ \mathcal{T} \left(J \frac{1}{\delta + \Gamma + \mathcal{L}_H - \mathcal{E} \cdot \nabla} (\nabla_j f_{\beta,\mu}(H)) \right)
$$

This contains all non-linear terms in the electric field Limit $\delta \rightarrow 0$ can be taken, if inverse exists Linear coefficients of $j_{\beta,\mu,\mathcal{E}}$ in $\mathcal E$ give conductivity tensor In **relaxation time approximation** (RTA) on replaces Γ by $\frac{1}{\tau} > 0$

Theorem 7.4 (Kubo formula in RTA [\[BES\]](#page-117-0))

$$
\sigma_{i,j}(\beta,\mu,\tau) = \mathcal{T}\left(\nabla_i H \frac{1}{\frac{1}{\tau} + \mathcal{L}_H}(\nabla_j f_{\beta,\mu}(H))\right)
$$
Hall conductance $i \neq j$ at zero temperature $\beta = \infty$ and $\tau = \infty$ exists

$$
\sigma_{i,j}(\beta=\infty,\mu,\tau=\infty) = \mathcal{T}\left((\mathcal{L}_H)^{-1}(\nabla_i H) \nabla_j P\right)
$$

where $P = \chi(H \leq \mu)$. As

$$
\nabla_j P = P \nabla_j P (1 - P) + (1 - P) \nabla_j P P
$$

and

$$
(\mathcal{L}_H)^{-1}(P\nabla_j H(\mathbf{1} - P)) = -i P \nabla_j P(\mathbf{1} - P)
$$

$$
(\mathcal{L}_H)^{-1}((\mathbf{1} - P)\nabla_j H P) = i(\mathbf{1} - P)\nabla_j P P
$$

Hence

$$
\sigma_{i,j}(\beta=\infty,\mu,\tau=\infty) = i \mathcal{T} \left(P[\nabla_i P,\nabla_j P] \right) = \frac{1}{2\pi} \operatorname{Ch}_{\{i,j\}}(P)
$$

R.h.s. is integer-valued in dimension $d = 2$ and $d = 3$ (3D QHE) This result holds also in a mobility gap regime [\[BES\]](#page-117-0)

Electric polarization

 $t \in [0, 2\pi) \cong \mathbb{S}^1 \mapsto H(t)$ periodic gapped Hamiltonian (changes dyn.) Change ∆*P* in polarization is integrated induced current density:

$$
\Delta P = \int_0^{2\pi} dt \, \mathcal{T}(\rho(t) \, J(t)) \qquad , \qquad \rho(0) = P_0 = \chi(H \le \mu)
$$

with $J(t) = i[H(t), X]$. Algebraic reformulation:

$$
\Delta P = \int_0^{2\pi} dt \, \mathcal{T}(\rho(t) \left[\partial_t \rho(t), [X, \rho(t)] \right])
$$

However, $\rho(t)$ unknown. So adiabatic limit of slow time changes:

Theorem 7.5 (Kingsmith-Vanderbuilt and [\[ST\]](#page-118-0))

 $t \in \mathbb{S}^1 \mapsto H(t)$ smooth with gap open for all t *With* $\rho(0) = P_0(0)$ and $\varepsilon \partial_t \rho(t) = \iota[\rho(t), H(t)]$, for any $N \in \mathbb{N}$ ∆*P* " *i* $rac{a}{c^{2\pi}}$ 0 *dt* T $P_0(t) \left[\partial_t P_0(t), [X, P_0(t)] \right] + \mathcal{O}(\varepsilon^N)$

Now add time to algebra: $C(\mathbb{S}^1, \mathcal{A}_d)$ is like \mathcal{A}_{d+1} 0th component is time and $\nabla_0 = \partial_t$ Also trace on $C(\mathbb{S}^1, \mathcal{A}_d)$ is $\frac{1}{2\pi}$ յ —
_∫2π $\int_0^{2\pi} dt \mathcal{T}$

Korollar 7.6

Polarization of periodically driven system is topological:

$$
\Delta P_j = 2\pi \operatorname{Ch}_{\{0,j\}} + \mathcal{O}(\varepsilon^N)
$$

For d = 1, 2 *and j* = 1, *one hence has* $\Delta P_1 \in 2\pi \mathbb{Z}$ *up to* $\mathcal{O}(\varepsilon^N)$

However, in $d = 3$ one does **not** have $\Delta P_i \in 2\pi \mathbb{Z}$, but due to generalized Streda formula, magneto-electric response satisfies

$$
\alpha_{1,2,3} \ = \ \partial_{B_{2,3}} \Delta P_1 \ = \ 2 \pi \, C h_{\{0,1,2,3\}} \ \in \ 2 \pi \, \mathbb{Z}
$$

Similarly: IDOS on gaps satisfies gap labelling

Chiral polarization

Chiral Hamiltonian $H = -\sigma_3 H \sigma_3$, typically due to sub-lattice symmetry $chiral$ polarization $=$ difference between two electric dipole moments

$$
P_{\rm c} = \mathbf{E} \operatorname{Tr} \langle 0 | P \sigma_3 X P | 0 \rangle = i \mathcal{T} (P \sigma_3 \nabla P)
$$

due to $X|0\rangle = 0$. Let *U* be Fermi unitary of P

Proposition 7.7 ([\[PS\]](#page-117-1))

$$
P_{c,j} = -\frac{1}{2} \, Ch_{\{j\}}(U) \qquad , \qquad j = 1, \ldots, d
$$

Proof. Expressing *P* in terms of *U*

$$
P_{\rm c} = \frac{i}{4} \mathcal{T} \left(\begin{pmatrix} 1 & U^* \\ -U & -1 \end{pmatrix} \begin{pmatrix} 0 & -\nabla U^* \\ -\nabla U & 0 \end{pmatrix} \right) = \frac{i}{4} \mathcal{T}(-U^* \nabla U + U \nabla U^*)
$$

Now use $U\nabla U^* = -(\nabla U)U^*$ and cyclicity \square

8 Bulk-boundary correspondence and applications

Toeplitz extension $\mathcal{T}(\mathcal{A}_d) = C^*(S_1^B, \ldots, S_{d-1}^B, \widehat{S}_d^B, W_\omega)$

edge half-space bulk
\n
$$
0 \rightarrow \mathcal{E}_d \rightarrow \mathcal{T}(A_d) \rightarrow A_d \rightarrow 0
$$

Moreover: $\mathcal{E}_d \cong \mathcal{A}_{d-1} \otimes \mathcal{K}(\ell^2(\mathbb{N}))$

$$
K_0(\mathcal{A}_{d-1}) \xrightarrow{i_*} K_0(\mathcal{T}(\mathcal{A}_d)) \xrightarrow{\pi_*} K_0(\mathcal{A}_d)
$$
\n
$$
\downarrow \text{Exp}
$$
\n
$$
K_1(\mathcal{A}_d) \xleftarrow{\pi_*} K_1(\mathcal{T}(\mathcal{A}_d)) \xleftarrow{i_*} K_1(\mathcal{A}_{d-1})
$$

Theorem 8.1 ([\[KRS,](#page-117-2) [PS\]](#page-117-1))

$$
\begin{aligned}\n\text{Ch}_{I \cup \{d\}}(A) &= \text{Ch}_{I}(\text{Ind}(A)) \qquad |I| \text{ even }, [A] \in K_{1}(\mathcal{A}_{d}) \\
\text{Ch}_{I \cup \{d\}}(P) &= \text{Ch}_{I}(\text{Exp}(P)) \qquad |I| \text{ odd }, [P] \in K_{0}(\mathcal{A}_{d})\n\end{aligned}
$$

Proof: loooong **Example:** $d = 1$ was exactly the SSH model

Boundary maps in terms of Hamiltonians

Theorem 8.2 ([\[KRS,](#page-117-2) [PS\]](#page-117-1))

Let $H \in M_l(A_d)$ *with gap* $\Delta \ni \mu$ *and* $P = \chi(H \leq \mu) \in M_l(A_d)$ *With continuous* $q(E) = 1$ *for* $E < \Delta$ *and* $q(E) = 0$ *for* $E > \Delta$ *:*

$$
Exp([P]_0) = [exp(-2\pi i g(\hat{H}))]_1 \in K_1(\mathcal{E}_d)
$$

Proof: $g(H) \in \mathcal{T}(\mathcal{A}_d)$ is a selfadjoint lift of *P*

Theorem 8.3 ([\[PS\]](#page-117-1))

Let H ∈ *M*₂^{*(A_d)</sub> chiral with gap* $\Delta \ni 0$ *and Fermi unitary U* ∈ *M*_{*L*}(*A_d*)} *With odd continuous f* $(E) = -1$ *for* $E < \Delta$ *and f* $(E) = 1$ *for* $E > \Delta$ *:*

$$
\text{Ind}([\![U]\!]_1) \ = \ [\text{e}^{-\imath \frac{\pi}{2} f(\hat{H})} \text{diag}(\textbf{1}, 0) \text{e}^{\imath \frac{\pi}{2} f(\hat{H})}]_0 - [\text{diag}(\textbf{1}, 0)]_0 \in \text{K}_0(\mathcal{E}_d)
$$

If central band of edge states gapped with projection $\dot{P} = \dot{P}_+ + \dot{P}_-.$

$$
Ind([U]_1) = [\hat{P}_+]_0 - [\hat{P}_-]_0 \in K_0(\mathcal{E}_d)
$$

Strict boundary formulation of boundary invariant

Theorem 8.4 (with Toniolo)

Let H ∈ *M*_{*L*}(\mathcal{A}_d) be translation invariant with gap $\Delta \ni \mu$ $Suppose \ \hat{H} = \int_{\mathbb{T}^{d-1}}^{\oplus} d\kappa \ \hat{H}(\kappa)$ with one-sided block Jacobi matrix $\hat{H}(\kappa)$ *Set for some* $\delta \neq 0$:

$$
\widehat{G}(k) = \langle 0 | (\widehat{H}(k) + i\delta)^{-1} | 0 \rangle \in M_L(\mathbb{C})
$$

Then for $\widehat{U}|_1 = \text{Exp}[P]_0$

$$
Ch_{\{1,\ldots,d-1\}}(\hat{U}) = Ch_{\{1,\ldots,d-1\}}\Big(k \in \mathbb{T}^{d-1} \mapsto (\hat{G}(k) - i)(\hat{G}(k) + i)^{-1}\Big)
$$

Moreover, if $R(k) \in M_L(\mathbb{C})$ *is reflection matrix of* $\hat{H}(k)$ *at energy* μ *,*

$$
Ch_{\{1,\dots,d-1\}}(\widehat{U}) = Ch_{\{1,\dots,d-1\}}(k \in \mathbb{T}^{d-1} \mapsto R(k))
$$

Dimensional reduction! Open problem: do this for disordered systems

Physical implication in $d = 2$ **: QHE**

P Fermi projection below a bulk gap $\Delta \subset \mathbb{R}$. Kubo formula:

 $\text{Hall conductance} = \text{Ch}_{\{1,2\}}(P)$

Bulk-boundary:

$$
Ch_{\{1,2\}}(P) \ = \ Ch_{\{1\}}(Exp(P)) \ = \ Wind(Exp(P))
$$

With continuous $g(E) = 1$ for $E < \Delta$ and $g(E) = 0$ for $E > \Delta$:

$$
\text{Exp}(\textit{P})\ =\ \text{exp}(-2\pi i\,g(\widehat{\textit{H}}))\ \in\ \mathcal{T}(\mathcal{A}_2)
$$

as indeed π $(\mathbf{g}(\hat{H})) = \mathbf{g}(H) = P$ so that π $(\text{Exp}(P)) = 1$ trivial

Theorem 8.5 (Quantization of boundary currents [\[KRS,](#page-117-2) [PS\]](#page-117-1))

$$
\mathrm{Ch}_{\{1,2\}}(P) \,\, = \,\, \mathbb{E} \sum_{n_2 \geqslant 0} \big\langle 0, n_2 | g'(\widehat{H}) i[X_1, \widehat{H}] | 0, n_2 \big\rangle
$$

The r.h.s. is current density flowing along the boundary

Proof: With $\widehat{\mathcal{T}}(A) = \mathcal{T}_1 \operatorname{Tr}_2(A) = \mathbf{E}_{\mathbb{P}} \sum$ $_{n_{2}\geqslant0}\braket{0,n_{2}|\widehat{A}_{\omega}|0,n_{2}},$ r.h.s. is

$$
j^{\rm e}(g)~=~\mathbb{E}\sum_{n_2\geqslant 0}\langle 0,n_2|g'(\widehat{H})i[X_1,\widehat{H}]|0,n_2\rangle~=~\widehat{\mathcal{T}}\big(\widehat{J}_1~g'(\widehat{H})\big)
$$

Summability in *n*² has to be checked

Let $\Pi: \ell^2({\mathbb Z}^2) \to \ell^2({\mathbb Z} \times {\mathbb N})$ surjective partial isometry,

namely ΠΠ * identity on $\ell^2(\mathbb{Z} \times \mathbb{N})$

 $Then \hat{H} = \Pi H \Pi^*$

Proposition 8.6

For $G \in C^{\infty}(\mathbb{R})$ *with* $supp(G) \cap \sigma(H) = \emptyset$ *Then the operator* $G(\hat{H})$ *is* $\hat{\tau}$ -traceclass

Proof based on functional calculus often attributed to Helffer-Sjorstrand

Proposition 8.7 (Functional calculus à la Dynkin 1972)

 $\chi \in C_0^{\infty}((-1, 1), [0, 1])$ even and equal to 1 on $[-\delta, \delta]$ *For N* \geq 1 *let quasi-analytic extension* \widetilde{G} : $\mathbb{C} \rightarrow \mathbb{C}$ of G by

$$
\widetilde{G}(x, y) = \sum_{n=0,...,N} G^{(n)}(x) \frac{(iy)^n}{n!} \chi(y)
$$
, $z = x + iy$

Then with norm-convergent Riemann sum ż

$$
G(H) = \frac{-1}{2\pi} \int_{\mathbb{R}^2} dx dy \, \partial_{\overline{z}} \widetilde{G}(x, y) (z - H)^{-1}
$$

Proof. Crucial identity is

$$
\partial_{\overline{z}} \widetilde{G}(x,y) = G^{(N+1)}(x) \frac{(iy)^N}{N!} \chi(y) + i \sum_{n=0,...,N} G^{(n)}(x) \frac{(iy)^n}{n!} \chi'(y)
$$

In particular, uniformly in *x*, *y*, one has $|\partial_{\overline{z}}\widetilde{G}(x,y)|\,\leqslant\, C\,|y|^{N}$ Hence also $\partial_{\overline{z}}\widetilde{G}(x,0)=0$. Now resolvent bound. Details....

Proof of Proposition [8.6.](#page-80-0) Geometric resolvent identity

$$
\frac{1}{z-\widehat{H}} = \Pi \frac{1}{z-H} \Pi^* + \frac{1}{z-\widehat{H}} (\widehat{H}\Pi^* - \Pi H) \frac{1}{z-H} \Pi^*
$$

in Dynkin for $G(\hat{H})$ together with $G(H) = 0$ leads to

$$
G(\hat{H}) = \Pi G(H) \Pi^* + \hat{K}
$$

=
$$
\frac{-1}{2\pi} \int_{\mathbb{R}^2} dx dy \ \partial_{\overline{z}} \tilde{G}(x, y) \frac{1}{z - \hat{H}} (\hat{H} \Pi^* - \Pi H) \frac{1}{z - H} \Pi^*
$$

Resolvents have fall-off of their matrix elements off the diagonal:

$$
(n_j - m_j)^k \langle n | (z - H)^{-1} | m \rangle = i^k \langle n | \nabla_j^k (z - H)^{-1} | m \rangle \qquad , \qquad k \in \mathbb{N}
$$

Expand $\nabla^{k}(z-H)^{-1}$ by Leibniz rule. As $\|\nabla^{k}H\| \leq C$

$$
|\langle n|(z-H)^{-1}|m\rangle| \le \frac{1}{|y|^{k+1}} \frac{C_k}{1+|n_j-m_j|^k}
$$

Same bound holds for resolvent of \hat{H} (improvement: Combes-Thomas)

If finite range, $\hat{H}\Pi^* - \Pi H$ has matrix elements only on boundary. Then

$$
\begin{aligned} &\left. \langle 0,n_2|\hat{K}|0,n_2\rangle \right|\\ &\leqslant \sum\limits_{m\in\mathbb{Z}\times\mathbb{N}}\sum\limits_{k\in\mathbb{Z}^2}\frac{1}{2\pi}\int_{\mathbb{R}^2}dx\,dy\,|\partial_{\overline{z}}\widetilde{G}(x,y)|\,|\langle 0,n_2|(z-H)^{-1}|m\rangle|\\ &\quad\quad \left. |\langle m|\hat{H}\Pi^*-\Pi H|k\rangle \right|\,|\langle k|(z-H)^{-1}|0,n_2\rangle|\\ &\leqslant C\sum\limits_{m_1\geqslant 0}\int_{\mathbb{R}^2}dx\,dy\,|\partial_{\overline{z}}\widetilde{G}(x,y)|\,\frac{1}{|y|^{2k+2}}\,\frac{1}{1+|n_2|^{2k}}\,\frac{1}{1+|m_1|^{2k}} \end{aligned}
$$

Now above bound on resolvent for $N \ge 2k + 2$

As integral over bounded region, sum can be carried out

$$
|\langle 0,n_2|\hat{K}|0,n_2\rangle| \;\leqslant\; \frac{C}{1+|n_2|^{2k}}
$$

But this implies desired $\hat{\tau}$ -traceclass estimate

Proof of Theorem [8.5.](#page-79-0) Set $\hat{U} = \text{Exp}(P) = \exp(-2\pi i g(\hat{H}))$ and

$$
\text{Ind} = i \, \widehat{\mathcal{T}} \big((\widehat{U}^* - 1) \nabla_1 \widehat{U} \big)
$$

Express \hat{U} as exponential series and use Leibniz rule:

$$
\text{Ind} \ = \ \sum_{m=0}^\infty \frac{(2\pi i)^m}{m!} \sum_{l=0}^{m-1} \ \widehat{\mathcal{T}}\left((\widehat{U}^* - \mathbf{1})\,g(\widehat{H})^l\,\nabla_1 g(\widehat{H})\,g(\widehat{H})^{m-l-1}\right)
$$

where trace and sum exchange by $\hat{\mathcal{T}}$ -traceclass property of \hat{U} – **1** Due to cyclicity and $\widehat{[U}, g(\widehat{H})] = 0$, each summand equal to $\widehat{\mathcal{T}}((\widehat{U}^* - 1) g(\widehat{H})^{m-1} \nabla_1 g(\widehat{H}))$

Exchanging sum and trace, summing up again: ´

$$
\text{Ind}~=~-2\pi\;\widehat{\mathcal{T}}\left((\boldsymbol{1}-\widehat{\boldsymbol{U}})\,\nabla_{1}g(\widehat{\boldsymbol{H}})\right)
$$

Now same argument for $\hat{U}^k = \exp(-2\pi i k g(\hat{H}))$ for $k \neq 0$,

$$
\text{Ind}~=~\frac{i}{k}~\widehat{\mathcal{T}}\big((\widehat{U}^k-1)^*\nabla_1\widehat{U}^k\big)~=~-2\pi~\widehat{\mathcal{T}}\left((1-\widehat{U}^k)\,\nabla_1 g(\widehat{H})\right)
$$

 W riting $g(E) = \int dt \, \tilde{g}(t) \, e^{-E(1+it)}$ with adequate \tilde{g} , by DuHamel Ind $= 2\pi$ ż *dt* $\tilde{g}(t)$ $(1+it)$ r^1 0 $dq\,\hat{\mathcal{T}}$ $\overline{}$ $(\hat{U}^{k} - 1) e^{-(1-q)(1+it)\hat{H}} (\nabla_{1} \hat{H}) e^{-q(1+it)\hat{H}}$ \mathbf{r} W ith $g'(E) = -\int dt (1 + it) \tilde{g}(t) e^{-E(1+it)}$ for $k \neq 0$, $\ddot{}$ \mathbf{r}

$$
\text{Ind}~=~2\pi\;\widehat{\mathcal{T}}\left((\widehat{U}^k-\textbf{1})\,g'(\widehat{H})\,\nabla_1\widehat{H}\right)
$$

For $k = 0$, the r.h.s. vanishes. To conclude, let $\phi \in C_0^{\infty}((0,1), \mathbb{R})$ Fourier coefficients $a_k = \int_0^1$ $\frac{1}{0}$ *dx* $e^{-2\pi ikx}\phi(x)$ satsify $\sum_{k} a_{k}e^{2\pi ikx} = \phi(x)$ In particular, $\sum_{k} a_k = 0$ and $\ddot{}$ $\ddot{}$

$$
a_0 \text{ Ind } = -\sum_{k\neq 0} a_k \text{ Ind } = 2\pi \sum_k a_k \widehat{\mathcal{T}}((1-\widehat{U}^k) g'(\widehat{H}) \nabla_1 \widehat{H})
$$

$$
= 2\pi \widehat{\mathcal{T}}((0-\phi(g(\widehat{H}))) g'(\widehat{H}) \nabla_1 \widehat{H})
$$

As $\phi \to \chi_{[\![0,1]\!]}$ also $\bm{a_0} \to \bm{1}$ and $\phi(\bm{g}(\widehat{H}))\bm{g}'(\widehat{H}) \to \bm{g}'(\widehat{H})$ (no Gibbs) As $J_1 = \nabla_1 \hat{H}$ proof is concluded

Chiral system in $d = 3$: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) \Longrightarrow Fermi unitary A

 $Ch_{\{1,2,3\}}(A) = Ch_{\{1,2\}}(Ind(A))$

Magnetic field perpendicular to surface opens gap in surface spec. With $\hat{P} = \hat{P}_+ + \hat{P}_-$ projection on central surface band, as in SSH:

$$
\, \text{Ind}(A) \,\, = \,\, [\hat{P}_+] \, - \, [\hat{P}_-]
$$

Theorem 8.8 ([\[PS\]](#page-117-1))

Suppose either $\hat{P}_+ = 0$ *or* $\hat{P}_- = 0$ (conjectured to hold). Then:

 $\mathrm{Ch}_{\{1,2,3\}}(\mathcal{A})+0 \Longrightarrow$ surface QHE, Hall cond. imposed by bulk

Actually only approximate chiral symmetry needed Experiment? No (approximate) chiral topological material known

Delocalization of boundary states

Hypothesis: bulk gap at Fermi level μ

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem 8.9 ([\[PS\]](#page-117-1))

For even d, if strong invariant $\text{Ch}_{\{1,\ldots,d\}}(P) \neq 0$ *, then no Anderson localization of boundary states in bulk gap*

Technically: Aizenman-Molcanov bound for no energy in bulk gap

Theorem 8.10 ([\[PS\]](#page-117-1))

For odd d \geqslant *3, if strong invariant* $\mathrm{Ch}_{\{1,...,d\}}(\mathcal{A})\neq 0$ *, then no Anderson localization at* $\mu = 0$

BBC for continuously periodically driven systems

BBC in time direction: stroboscopics Here: BBC in spacial direction Lift $t \in \mathbb{S}^1 \cong [0, 2\pi) \mapsto \hat{H}(t)$ of continuous gapped $t \in \mathbb{S}^1 \mapsto H(t)$ in

$$
0 \longrightarrow C(\mathbb{S}^1, \mathcal{E}_d) \stackrel{i}{\longrightarrow} C(\mathbb{S}^1, \widehat{\mathcal{A}}_d) \stackrel{\text{ev}}{\longrightarrow} C(\mathbb{S}^1, \mathcal{A}_d) \longrightarrow 0
$$

Then for polarization in direction *d* with adiabatic projection *PA*:

$$
\Delta P_d = 2\pi \mathrm{Ch}_{\{0,d\}}(P_A) = 2\pi \mathrm{Ch}_{\{0\}}(U_{\Delta})
$$

where 0-th component still time and $\left\lceil U_\wedge \right\rceil_1 = \text{Exp}[P_\wedge]_0$. Now

$$
\text{Ch}_{\{0\}}(U_{\Delta})\;=\;-2\pi\,\int_0^{2\pi}\!\!dt\;\widehat{\mathcal{T}}\Big(g'\big(\widehat{H}(t)\big)\,\partial_t\widehat{H}(t)\Big)
$$

For $d = 1$, this is 2π times spectral flow of boundary eigenvalues. Thus

$$
\Delta P_1 = -2\pi \,\text{SF}\left(t \in \mathbb{S}^1 \mapsto \hat{H}(t) \text{ by } \mu\right)
$$

namely charge pumped from valence to conduction states For $d > 1$, spectral flow is in sense of Breuer-Fredholm operators

Application to topological Floquet systems

Given $t \mapsto H(t) = H(t)^* \in \mathcal{A}_d$ piecewise continuous 2 π -periodic family Differentiable path of unitaries $t \mapsto U(t) \in \mathcal{A}_d$ from

$$
i \partial_t U(t) = H(t) U(t) \qquad , \qquad U(0) = 1
$$

Evolution $U = U(2\pi)$ over period 2π called Floquet operator Suppose $\bm{e}^{i\theta} \notin \sigma(\bm{U})$ quasi-energy spectrum for $\theta \in [0, 2\pi)$ and set

$$
h_{\theta} = -(2\pi i)^{-1} \log_{\theta}(U)
$$

Here log_θ natural logarithm with branch cut along $r \in [0, \infty) \mapsto re^{i\theta}$ By construction, $U = e^{-2\pi i h_\theta}$. Set

$$
H_{\theta}(t) = \begin{cases} 2H(2t), & t \in [0, \pi] \\ -2h_{\theta}, & t \in (\pi, 2\pi] \end{cases}
$$

Now periodized time evolution V_{θ} with $V_{\theta}(0) = V_{\theta}(2\pi) = 1$

$$
i \partial_t V_{\theta}(t) = H_{\theta}(t) V_{\theta}(t) , \qquad V_{\theta}(0) = 1
$$

Invariants and BBC

There are new bulk invariant involving the time $t = x_0$, *e.g.* strong inv.

 $\text{Ch}_{\{0,1,...,d\}}(V_{\theta})$

Consider now boundary evolution:

$$
i \partial_t \widehat{U}(t) = \widehat{H}(t) \widehat{U}(t) \qquad , \qquad \widehat{U}(0) = \widehat{\mathbf{1}}
$$

Floquet operator $\hat{U} = \hat{U}(2\pi) \in \mathcal{T}(\mathcal{A}_d)$ is unitary lift of *U*

Theorem 8.11 (with Sadel)

Let $e^{i\theta} \notin \sigma(U) \notin \sigma(U)$ $g_\theta: \mathbb{S}^1 \rightarrow [0, 1]$ smooth increasing with jump down by 1 *at some* $e^{\imath \theta'}$

$$
\Theta^{-1}(\text{Ind}([\,V_{\theta}]_1)) \ = \ [\,e^{-2\pi i\,g_{\theta}(\hat{U})}\,]_1
$$

If $d = 2$ reformulation as counting of edge channels

9 Implementation of symmetries

This invokes real structure simply denoted by bar on H and $\mathcal{B}(\mathcal{H})$

chiral symmetry (CHS) : $H^*_{ch} H J_{ch} = -H$ time reversal symmetry (TRS) : $S_{tr}^* \overline{H} S_{tr} = H$ particle-hole symmetry (PHS) : $\frac{1}{\rm ph} \overline{H}\, \mathcal{S}_{\textrm{ph}} \,=\, -H$

 $S_{\text{tr}} = e^{i\pi s^y}$ orthogonal on \mathbb{C}^{2s+1} with $S_{\text{tr}}^2 = \pm 1$ even or odd $\mathcal{S}_{\scriptscriptstyle{\rm ph}}$ orthogonal on $\mathbb{C}_{\scriptscriptstyle{\rm ph}}^2$ with $\mathcal{S}_{\scriptscriptstyle{\rm ph}}^2=\pm\mathbf{1}$ even or odd

Note: TRS + PHS \implies CHS with $J_{ch} = S_{tr}S_{ph}$

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real

Further distinction in each of the 10 classes: topological insulators

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig,Kitaev 2008: just strong invariants

Periodic table: real classes only

64 pairings = 8 KR-cycles paired with 8 KR-groups

Focus on system in $d = 2$ with odd TRS $S = S_{n}$:

$$
S^2 = -1 \qquad S^* \overline{H} S = H
$$

\mathbb{Z}_2 index for odd TRS and $d = 2$

 $\mathsf{Rewrite} \quad \mathsf{S}^* \overline{H} \mathsf{S} = H = \mathsf{S}^* H^t \mathsf{S} \text{ with } H^t = (\overline{H})^*$ \implies $S^*(H^n)^tS = H^n$ for $n \in \mathbb{N}$ \implies $S^*P^tS = P$ For $d = 2$, Dirac phase $F = \frac{X_1 + iX_2}{|X_1 + iX_2|} = F^t$ and $[S, F] = 0$ Hence Fredholm operator $T = PFP$ of following type $\textsf{Definition} \ \mathsf{T} \ \textsf{odd} \ \textsf{symmetric} \Longleftrightarrow \mathsf{S}^* \mathsf{T}^t \mathsf{S} = \mathsf{T} \Longleftrightarrow (\mathsf{T} \mathsf{S})^t = -\mathsf{T} \mathsf{S}$

Theorem 9.1 (Atiyah-Singer 1969)

 $\mathbb{F}_2(\mathcal{H}) = \{\text{odd symmetric Fredholm operators}\}\$ has 2 connected *components labelled by compactly stable homotopy invariant*

 $\text{Ind}_2(T) = \text{dim}(\text{Ker}(T)) \text{ mod } 2 \in \mathbb{Z}_2$

Application: \mathbb{Z}_2 phase label for Kane-Mele model if dyn. localized

Existence proof of \mathbb{Z}_2 **-indices via Kramers arg.**

First of all: Ind $(T) = 0$ because $\text{Ker}(T^*) = S \text{Ker}(T)$ **Idea:** $\text{Ker}(T) = \text{Ker}(T^*T)$

and positive eigenvalues of *T* ˚*T* have even multiplicity

Let $T^*Tv = \lambda v$ and $w = S Tv$ (N.B. $\lambda \neq 0$). Then

$$
T^* T w = S(S^* T^* S) (S^* T S) \overline{Tv}
$$

= $S \overline{T} \overline{T^* T v} = \lambda S \overline{T} \overline{v} = \lambda w$.

Suppose now $\mu \in \mathbb{C}$ with $v = \mu w$. Then

$$
v = \mu S \overline{T} \overline{v} = \mu S \overline{T} \overline{\mu} S T v = -|\mu|^2 T^* T v = -|\mu|^2 \lambda v
$$

Contradiction to $v \neq 0$.

Now span $\{v, w\}$ is invariant subspace of T^*T .

Go on to orthogonal complement

Symmetries of the Dirac operator

$$
D = \sum_{j=1}^d X_j \otimes \mathbf{1} \otimes \gamma_j
$$

 $\gamma_1, \ldots, \gamma_d$ irrep of C_d with $\gamma_{2i} = -\overline{\gamma_{2i}}$ and $\gamma_{2i+1} = \overline{\gamma_{2i+1}}$ In even *d* exists grading $\Gamma = \Gamma^*$ with $D = -\Gamma D\Gamma$ and $\Gamma^2 = \mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

 (D, Γ, Σ) defines a *KRⁱ*-cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Index theorems for periodic table

Symmetries of *KR*-cycles **and** Fermi projection/unitary lead to:

Theorem 9.2

Index theorems for all strong invariants in periodic table

Remarks:

Result holds also in the regime of strong Anderson localization 2 Z entries result from quaternionic Fredholm (even Ker, CoKer) Links to Atiyah-Singer classifying spaces Formulation as Clifford valued index theorem possible

Physical implications: case by case study necessary!

Example: focus on TRS $d = 2$ quantum spin Hall system (QSH)

Spin Chern numbers [\[Pro\]](#page-119-0)

Approximate spin conservation \implies spin Chern numbers $\text{SCh}(P)$ Kane-Mele Hamiltonian has small commutator $[H, s_z]$ Also $\lceil P, s_z \rceil$ small and thus $\lceil P s_z P \rceil_{\text{Ran}(P)}$ spectrum close to $\{-1, 1\}$

 \implies spectral gap! Let P_{+} be two associated spectral projections

Proposition 9.3 ([\[Pro\]](#page-119-0))

P˘ *have off-diagonal decay so that Chern numbers can be defined*

Hence $P = P_+ + P_-$ decomposes in two *smooth* projections

Definition 9.4

Spin Chern number of *P* is $SCh(P) = Ch(P_+)$

By TRS, $Ch(P) = 0$ and thus $SCh(P) = -Ch(P_+)$

Theorem 9.5 ([\[SB3\]](#page-118-1))

 $\text{Ind}_2(PFP) = \text{SCh}(P) \text{ mod } 2$

Spin filtered helical edge channels for QSH

Remarkable: Non-trivial topology $SCh(P)$ persists TRS breaking!

General strategy: approximately conserved quantities lead to integer-valued invariants which persist breaking of real symmetry

Further example:

Kitaev chain (Class D with \mathbb{Z}_2 -invariant) has a winding number

Theorem 9.6

If $SCh(P) \neq 0$, spin filtered edge currents in $\Delta \subset$ gap are stable w.r.t. *perturbations by magnetic field and disorder:*

E Tr $\langle 0 | \chi_{\Delta}(\hat{H}) \frac{1}{2}$ 2 $\{i[\hat{H}, X_1], s_z\}$ $|0\rangle$ = $|\Delta|$ SCh (P) + *correct.*

Resumé: Ind₂ $(PFP) = 1 \implies$ no Anderson loc. for edge states Rice group of Du (since 2011): QSH stable w.r.t. magnetic field

10 Spectral flow in topological insulators

Theorem 10.1 (Laughlin 1983, Avron, Punelli 1992, Macris, [\[DS\]](#page-118-2)) *H* disordered Harper-like operator on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^L$ with $\mu \in \mathcal{G}$ ap H_{α} *Hamiltonian with extra flux* $\alpha \in [0, 1]$ *through* 1 *cell of* \mathbb{Z}^2 *Then for P* = χ (*H* $\leq \mu$) $S\text{F}(\alpha \in [0, 1] \mapsto H_\alpha \text{ through } \mu$ \mathbf{r}

 $= -\text{Ch}_{\{1,2\}}(P)$

Phillips' analytic definition (1996)

Theorem 10.2 (Phillips 1996)

 $SF(t \in [0, 1] \rightarrow T_t)$ independent of partition and $a_n < 0 < b_n$. *It is a homotopy invariant when end points are kept fixed. It satisfies concatenation and normalization:*

 $SF(t \in [0, 1] \rightarrow T + (1 - 2t)P) = -\dim(P)$ for $TP = P$

Theorem 10.3 (Lesch 2004)

Homotopy invariance, concatenation, normalization characterize SF

Theorem 10.4 (Perera 1993, Phillips 1996) SF *on loops establishes isomorphism* $\pi_1(\mathbb{F}_{\text{sa}}^*) = \mathbb{Z}$

Theorem 10.5 (Phillips 1996)

0 gap of $H = H^*$ and $P = \chi(H \le 0)$. If $t \in [0, 1] \mapsto H_t = H_t^*$ with

- (i) $H_1 = UH_0U^*$ for unitary U
- (ii) 0 *in essential gap of H_t for all t* \in [0, 1]

then

$$
SF(t \in [0, 1] \mapsto H_t \text{ through } 0) = -\operatorname{Ind}(PUP)
$$

Exact sequence interpretation: Mapping cone associated to *U*:

$$
\mathcal{M} = \{t \in [0,1] \mapsto A_t \in \mathcal{A} + \mathcal{K} : A_0 = U^* A_1 U, A_t - A_0 \in \mathcal{K} \}
$$

with $0 \to S\mathcal{K} \hookrightarrow \mathcal{M} \stackrel{\text{ev}}{\to} \mathcal{A} \to 0$. Now $K_1(S\mathcal{K}) = K_0(\mathcal{K}) = \mathbb{Z}$ and

 $\exp[P]_0 = [\exp(2\pi i \text{ Lift}(P)_t)]_1 = [\exp(2\pi i(P + t U^* [P, U]))]_1$

Then for pairing with odd Fredholm module
$$
(\mathcal{H}, U)
$$

 $\langle (\mathcal{H}, U), [P]_0 \rangle = \langle (\int dt \otimes Tr, \partial_t), Exp[P]_0 \rangle = SF(2P-1+tU^*[2P-1, U])$

Proof of bulk-boundary in $d = 2$ (idea Macris 2002)

Based on gauge invariance and compact stability

Exact sequence behind the Laughlin argument

Theorem 10.6

 W ith $\mathcal{E}(\mathcal{A}_2) = C^*(S_1^B, S_2^B, P_0 = |0\rangle\langle 0|)$, split exact sequence

$$
0 \longrightarrow K \stackrel{i}{\hookrightarrow} \mathcal{E}(\mathcal{A}_2) \stackrel{\pi}{\underset{j}{\rightleftarrows}} \mathcal{A}_2 \longrightarrow 0
$$

Moreover, $\mathcal{E}(\mathcal{A}_2) = C^*(S_1^{\mathcal{B},\alpha}, S_2^{\mathcal{B},\alpha})$ for $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ where $S_j^{\mathcal{B},\alpha}$ extra flux

Thus Ind $= 0$ and $Exp = 0$ so that

$$
K_0(\mathcal{K}) = \mathbb{Z} \xrightarrow{i_*} K_0(\mathcal{E}(\mathcal{A}_2)) = \mathbb{Z}^3 \xrightarrow{\pi_*} K_0(\mathcal{A}_2) = \mathbb{Z}^2
$$

\n
$$
\downarrow \text{End}
$$

\n
$$
K_1(\mathcal{A}_2) = \mathbb{Z}^2 \xleftarrow{\pi_*} K_1(\mathcal{E}(\mathcal{A}_2)) = \mathbb{Z}^2 \xleftarrow{i_*} K_1(\mathcal{K}) = 0
$$

\mathbb{Z}_2 invariant and \mathbb{Z}_2 spectral flow for QSH

Theorem 10.7

 $\alpha \in [0, 1] \mapsto H(\alpha)$ inserted flux in Kane-Mele model (breaks TRS) $\text{Ind}_2(PFP) = 1 \implies H(\alpha = \frac{1}{2})$ 2 q *has* TRS *+ Kramers pair in gap*

Spectral flow in higher dimensions

For *d* even, index theorem used Dirac (even Fredholm module)

$$
D = \langle \gamma | X \rangle = -\Gamma D \Gamma = |D| \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix} = |D| G
$$

Then strong invariants:

$$
Ch_{\{1,\ldots,d\}}(P) = Ind(P_{\omega}FP_{\omega})
$$

Aim: Calculate this as a spectral flow upon inserting monopole Introduce non-abelian skew-adjoint gauge potential for $k = 1, \ldots, d$:

$$
A_{k}^{\alpha} = \alpha G \partial_{k} G = \frac{\alpha}{2R^{2}} [D, \gamma_{k}] \sim R^{-1}
$$

where $R^2=D^2=X^2.$ One has $A^\alpha_k=\mathsf{\Gamma} A^\alpha_k \mathsf{\Gamma}$ diagonal. Set

$$
\nabla_k^{\alpha} = \partial_k - A_k^{\alpha} \quad \text{on } L^2(\mathbb{R}^d, \mathbb{C}^N)
$$
Monopole translations

Proposition 10.8

For $v \in \mathbb{R}^d$, $i\nabla_v^{\alpha} = i$ ř $\overline{\mathsf{a}}_k$ *v_k* ∇_k^α is essentially selfadjoint and

$$
(e^{\nabla^{\alpha}_{\mathbf{v}}}\psi)(x) = M^{\alpha}_{\mathbf{v}}(x)\,\psi(x+\mathbf{v})\;,\qquad \psi \in L^{2}(\mathbb{R}^{d},\mathbb{C}^{2N})
$$

 $\textit{where } x \in \mathbb{R}^d \setminus \{tv : t \in [-1, 0] \} \mapsto M_v^{\alpha}(x) \in \mathrm{U}(2N)$ *is continuous with*

$$
\lim_{|x|\to\infty}M_V^{\alpha}(x) = 1_{2N}
$$

Phase factor has rotation covariance w.r.t. Pin Group representation:

$$
g_O M_V^{\alpha}(O^*x) g_O^* = M_{Ov}^{\alpha}(x)
$$

and

$$
G\,e^{\nabla^\alpha_v}\,G\;=\;e^{\nabla^{1-\alpha}_v}
$$

Restriction $e^{\nabla_k^{\alpha}}$ to $\ell^2(\mathbb{Z}^d,\mathbb{C}^N)$ gives monopole translations S_k^{α}

Proposition 10.9

$$
S_k^{\alpha} - S_k^0
$$
 compact operator

Suppose Hamiltonian given by polynominal in shifts and potential

$$
H~=~P(S_1,\ldots,S_d)+W
$$

Insertion of monopole into Hamiltonian gives

$$
H_\alpha~=~\textit{P}(S_1^\alpha,\ldots,S_d^\alpha) + W
$$

Facts: $\alpha \mapsto H_{\alpha} - \mu$ path of selfadjoint Fredholms and $H_1 = G^*H_0G$

Theorem 10.10 (with Carey)

Let d bei even

$$
SF\Big(\alpha \in [0, 1] \mapsto H_{\alpha} \text{ through } \mu\Big) = -\text{Ch}_{\{1, ..., d\}}(P)
$$

Odd dimensional version involves "chirality flow"

11 Dirty superconductors

Disordered one-electron Hamiltonian *h* on $\mathcal{H} = \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^{2s+1}$

 $c = (c_{n,l})$ anhilation operators on fermionic Fock space $\mathcal{F}(\mathcal{H})$ Hamilt. on $\mathcal{F}_-(\mathcal{H})$ with mean field pair creation $\Delta^* = -\overline{\Delta} \in \mathcal{B}(\mathcal{H})$

$$
\mathbf{H} - \mu \mathbf{N} = \mathfrak{c}^* \left(h - \mu \mathbf{1} \right) \mathfrak{c} + \frac{1}{2} \mathfrak{c}^* \Delta \mathfrak{c}^* - \frac{1}{2} \mathfrak{c} \overline{\Delta} \mathfrak{c}
$$

$$
= \frac{1}{2} \begin{pmatrix} \mathfrak{c} \\ \mathfrak{c}^* \end{pmatrix}^* \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix} \begin{pmatrix} \mathfrak{c} \\ \mathfrak{c}^* \end{pmatrix}
$$

Hence BdG Hamiltonian on $\mathcal{H}_{\textrm{\tiny ph}}=\mathcal{H}\otimes \mathbb{C}_{\textrm{\tiny ph}}^2$

$$
H_{\mu} = \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix}
$$

Even PHS (Class D)

$$
S_{\scriptscriptstyle{\textrm{ph}}}^*\, \overline{H_{\mu}}\, S_{\scriptscriptstyle{\textrm{ph}}} \,=\, -H_{\mu} \qquad , \qquad S_{\scriptscriptstyle{\textrm{ph}}} = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}
$$

Class D systems

 $spec(H_u) = -spec(H_u)$ and generically gap or pseudo-gap at 0

Theorem 11.1

Gibbs (KMS) state for observable $\mathbf{Q} = d\Gamma(\mathbf{Q})$ \mathcal{L} \mathbf{r}

$$
\frac{1}{Z_{\beta,\mu}} \, \text{Tr}_{\mathcal{F}_{-}(\mathcal{H})} \left(\textbf{Q} \, e^{-\beta(\textbf{H}-\mu \, \textbf{N})} \right) \; = \; \text{Tr}_{\mathcal{H}_{\text{ph}}} (f_{\beta}(\mathcal{H}_{\mu}) \, \textbf{Q})
$$

Example $p + ip$ wave superconductor with $\mathcal{H} = \ell^2(\mathbb{Z}^2)$

$$
h=S_1+S_1^*+S_2+S_2^* \qquad \Delta_{p+ip}\;=\;\delta\left(S_1-S_1^*+i(S_2-S_2^*)\right)
$$

Then $P = \chi(H_u \leq 0)$ satisfies $\text{Ch}(P) = 1$ for $\mu > 0$ and $\delta > 0$

Conjecture (Kubo missing) Quantized Wiedemann-Franz

$$
\kappa_H = \frac{\pi}{8} \operatorname{Ch}(P) \; T \; + \; \mathcal{O}(T^2)
$$

Spectral flow in a BdG-Hamiltonian

Flux tube in two-dimensional BdG Hamiltonian

$$
S_{\scriptscriptstyle{ph}}^*\, \overline{H_{\alpha}}\, S_{\scriptscriptstyle{ph}}\ =\ -\, H_{-\alpha}\qquad ,\qquad S_{\scriptscriptstyle{ph}}^2=\pm 1
$$

Then $\mathcal{S}^{*}_{\textrm{\tiny{ph}}}H_{\alpha}\,\mathcal{S}_{\textrm{\tiny{ph}}}=-U^{*}H_{1-\alpha}U$ so that

$$
\sigma(H_{\alpha})\ =\ -\sigma(H_{-\alpha})\ =\ -\sigma(H_{1-\alpha})
$$

PHS only for $\alpha =$ 0, $\frac{1}{2}$ $\frac{1}{2}$, 1 and thus Ind $_2(H_{\frac{1}{2}})$ wel-defined

Theorem 11.2 ([\[DS\]](#page-118-0))

 $\text{Ind}(PUP) \text{ mod } 2 = \text{Ind}_2(H_{\frac{1}{2}})$

or: odd Chern number implies existence of zero mode at defect

These zero modes are Majorana fermions (Read-Green 2000)

Worth noting: $S_{\text{\tiny ph}}^2 = -1 \implies \text{Ind}(PUP)$ even \implies no zero mode

Spin quantum Hall effect in Class C

Theorem 11.3 (Altland-Zirnbauer 1997) *SU*(2) *spin rotation invariance* $[H, s] = 0$ $\implies H = H_{\text{red}} \otimes \mathbf{1}$ with odd PHS (Class C)

$$
S_{\scriptscriptstyle{\text{ph}}}^*\,\overline{H_{\scriptscriptstyle{\text{red}}}}\,S_{\scriptscriptstyle{\text{ph}}} = -H_{\scriptscriptstyle{\text{red}}}\qquad,\qquad S_{\scriptscriptstyle{\text{ph}}} = \begin{pmatrix}0&-1\\1&0\end{pmatrix}
$$

Example $d + id$ wave superconductor with h as above and

$$
\Delta_{d+i d}\,\,=\,\,\delta\,\big(i(S_1+S_1^*-S_2-S_2^*)\,\,+\,(S_1-S_1^*)(S_2-S_2^*)\big)s^2
$$

Again $\text{Ch}(P) = 2$ for $\delta > 0$ and $\mu > 0$

Theorem 11.4

Spin Hall conductance (Kubo) and spin edge currents quantized

 \mathbb{Z}^2

 $\mathbf{z}^{\mathbf{z}}$

Current aims:

- ' analysis of topology associated to spacial reflections, etc.
- ' bulk-edge correspondence in real cases
- further investigation of physical implications of invariants
- stability of invariants w.r.t. interactions
- analysis of bosonic systems and photonic crystals

Physics References

- [KM] C. L. Kane, E. J. Mele, *Quantum spin Hall effect in graphene*, Phys. Rev. Lett. **95**, 226801 (2005), *Z(2) topological order and the quantum spin Hall effect*, Phys. Rev. Lett. **95**, 146802 (2005).
- [RSFL] S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, *Topological insulators and superconductors: tenfold way and dimensional hierarchy*, New J. Phys. **12**, 065010 (2010).
- [Kit] A. Kitaev, *Periodic table for topological insulators and superconductors*, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conf. Proc. **1134**, 22-30 (2009).
- [SSH] W. P. Su, J. R. Schrieffer, A. J. Heeger, *Soliton excitations in polyacetylene*, Phys. Rev. **B 22**, 2099-2111 (1980).
- [AZ] A. Altland and M. R. Zirnbauer, *Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures*, Phys. Rev. B **55**, 1142-1161 (1997).

General Mathematics References

- [BR] O. Bratteli, D. W. Robinson, *Operator Algebras and Quantum Statistical Mechanics 1*, (Springer, Berlin, 1979).
- [CP] A. L. Carey, J. Phillips, *Spectral flow in Fredholm modules, eta invariants and the JLO cocycle*, K-Theory **31**, 135-194 (2004).
- [Con] A. Connes, *Noncommutative Geometry*, (Academic Press, San Diego, 1994).
- [GVF] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, *Elements of noncommutative geometry*, (Springer Science & Business Media, 2013).
- [RLL] M. Rordam, F. Larsen, N. Laustsen, *An Introduction to K-theory for C*˚ *-algebras*, (Cambridge University Press, Cambridge, 2000).
- [WO] N. E. Wegge-Olsen, *K-theory and C*˚ *-algebras*, (Oxford Univ. Press, Oxford, 1993).

References Schulz-Baldes *et. al.*

- [PS] E. Prodan, H. Schulz-Baldes, *Bulk and boundary invariants for complex topological insulators: From K -theory to physics*, (Springer Int. Pub., Szwitzerland, 2016).
- [BES] J. Bellissard, A. van Elst, H. Schulz-Baldes, *The non-commutative geometry of the quantum Hall effect*, J. Math. Phys. **35**, 5373-5451 (1994).
- [KRS] J. Kellendonk, T. Richter, H. Schulz-Baldes, *Edge current channels and Chern numbers in the integer quantum Hall effect*, Rev. Math. Phys. **14**, 87-119 (2002).
- [LSB] T. Loring, H. Schulz-Baldes, *Finite volume calculation of K -theory invariants*, arXiv 2017.
- [GS] J. Grossmann, H. Schulz-Baldes, *Index pairings in presence of symmetries with applications to topological insulators*, Commun. Math. Phys. **343**, 477-513 (2016).

References Schulz-Baldes *et. al.*

- [SB1] H. Schulz-Baldes, *Topological insulators from the perspective of non-commutative geometry and index theory*, Jahresber Dtsch Math-Ver **118**, 247273 (2016)
- [SB2] H. Schulz-Baldes, *Persistence of spin edge currents in disordered quantum spin Hall systems*, Commun. Math. Phys. **324**, 589-600 (2013).
- [ST] H. Schulz-Baldes, S. Teufel, *Orbital polarization and magnetization for independent particles in disordered media*, Commun. Math. Phys. **319**, 649-681 (2013).
- [DS] G. De Nittis, H. Schulz-Baldes, *Spectral flows associated to flux tubes*, Annales H. Poincare **17**, 1-35 (2016).
- [CPS] A. L. Carey, J. Phillips, H. Schulz-Baldes, *Spectral flow for real skew-adjoint Fredholm operators*, J. Spec. Theory, to appear.
- [SB3] H. Schulz-Baldes, Z2*-indices of odd symmetric Fredholm operators*, Dokumenta Math. **20**, 1481-1500 (2015).

More Mathematical Physics References

- [Pro] E. Prodan, *Robustness of the spin-Chern number*, Phys. Rev. **B 80**, 125327 (2009).
- [BCR] C. Bourne, A. L. Carey, A. Rennie, *A noncommutative framework for topological insulators*, Rev. Math. Phys. **28**, 1650004 (2016).
- [BKR] C. Bourne, J. Kellendonk, A. Rennie, *The K -Theoretic Bulk-Edge Correspondence for Topological Insulators*, Ann. Henri Poincaré **18**, 1-34 (2017).
- [Lor] T. A. Loring, *K-theory and pseudospectra for topological insulators*, Annals of Physics **356**, 383-416 (2015).

Other groups (each with personal point of view)

- ' Bourne, Carey, Rennie, Kellendonk
- Mathai, Thiang, Hanabus
- Zirnbauer, Kennedy
- Panati, Monaco, Teufel, Cornean
- Katsura, Koma
- ' Hayashi, Furuta, Kotani
- Graf, Porta
- ' Gawedzki *et. al.*
- Kaufmann's, Li
- many theoretical physics groups