Introduction to Spectral Theory First lecture: Bounded operators

Ingo Witt (Gottingen) ¨

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

> Tbilisi State University September 17-21, 2018

 Ω

Linear operators between Hilbert spaces

All Hilbert spaces considered in these lectures will be over $\mathbb C$ and be separable.

Let H , H' be Hilbert spaces.

Lemma

For a linear operator $A: H \to H'$, the following conditions are *equivalent*:

- *A is continuous,*
- *A* is bounded, i.e., $||Ax|| \leq C||x||$ for some $C \geq 0$,
- $\mathsf{graph}\,\mathcal{A} = \{ (x,\mathcal{A}x) \mid x \in \mathcal{H} \} \subset \mathcal{H} \times \mathcal{H}'$ *is closed* (closed graph theorem)*.*

Remark The best constant *C* is $\|A\| = \sup_{\|x\|=1} \|Ax\| = \sup_{\|x\|= \|y\|=1} |\langle Ax, y\rangle|.$

We write $\mathcal{L}(\mathcal{H},\mathcal{H}')$ for the space of these linear operators A and $\mathcal{L}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'$. イロト イ押ト イラト イラト - 3 OQ

L(H) as a *C* ∗ -algebra

 $\mathcal{L}(\mathcal{H})$ equipped with the operator norm $\|\ \|$ is a Banach algebra (in particular, $||AB|| \le ||A|| ||B||$ for $A, B \in \mathcal{L}(\mathcal{H})$).

Recall that the adjoint $A^* \in \mathcal{L}(\mathcal{H})$ of $A \in \mathcal{L}(\mathcal{H})$ is defined by

$$
\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad x, y \in \mathcal{H}.
$$

With the involution $A \mapsto A^*$, $\mathcal{L}(\mathcal{H})$ is in fact a C^* -algebra (in particular, $||A^*A|| = ||A||^2$ for $A \in \mathcal{L}(\mathcal{H})$).

Objective of these lectures Understand the spectral theory of self-adjoint operators $A \in \mathcal{L}(\mathcal{H})$.

Remark One could equally well study the spectral theory of self-adjoint elements of an abstract unital *C* ∗ -algebra.

Topologies on $\mathcal{L}(\mathcal{H},\mathcal{H}')$

There are three natural topologies on $\mathcal{L}(\mathcal{H},\mathcal{H}')$ of decreasing strength.

We define convergence of a sequence $\{\boldsymbol{A}_n\}\subset\mathcal{L}(\mathcal{H},\mathcal{H}')$ for each of these topologies:

 $\textcircled{1}$ *A*_{*n*} → *A* if $||A - A_n||$ → 0 (uniform operator or norm topology),

² *Aⁿ* ^s−→ *^A* if *^An^x* [→] *Ax* for each *^x* ∈ H (strong operator topology),

3 ∂ *A_n* $\stackrel{\text{w}}{\longrightarrow}$ *A* if $\langle A_{n}x, y\rangle \rightarrow \langle Ax, y\rangle$ for each $x, y \in \mathcal{H}$ (weak operator topology).

Theorem (Uniform boundedness principle)

 $Let \{A_n\} \subset \mathcal{L}(\mathcal{H}, \mathcal{H}')$ be a sequence. Suppose that $\{\langle A_n x, y \rangle\} \subset \mathbb{C}$ converges for all $x \in \mathcal{H}$, $y \in \mathcal{H}'$. Then $A_n \xrightarrow{w} A$ for some $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$.

 OQ

Resolvent and spectrum

Let $A \in \mathcal{L}(\mathcal{H})$.

Definition

- $1\quad \lambda\in\mathbb{C}$ belongs to the resolvent set $\rho(\pmb{A})$ if $(\pmb{A}-\lambda)^{-1}\in\mathcal{L}(\mathcal{H}).$
- 2) The resolvent is $R(\lambda, A) = (A \lambda)^{-1}$ for $\lambda \in \rho(A)$.
- 3 The spectrum is $\sigma(A) = \mathbb{C} \setminus \rho(A)$.

Theorem

σ(*A*) *is a non-empty, compact subset of* C *contained in* $B(0, ||A||) = \{\lambda \in \mathbb{C} \mid |\lambda| < ||A||\}.$ *The map* $\rho(A) \to \mathcal{L}(\mathcal{H})$, $\lambda \mapsto R(\lambda, A)$ *is holomorphic.*

Proof For $\lambda > ||A||$, $R(\lambda, A) = -\sum_{j=0}^{\infty} \lambda^{-(j+1)}A^j$. $\mathsf{For}~\lambda\in\rho(\pmb{A}),~|\mu-\lambda|<\|\pmb{R}(\lambda,\pmb{A})\|^{-1},~\pmb{R}(\mu,\pmb{A})=\sum_{j=0}^{\infty}(\mu-\lambda)^{j}\pmb{R}(\lambda,\pmb{A})^{j+1}.$ Finally, invoke Liouville's theorem to conclude that $\sigma(A) \neq \emptyset$ [.](#page-5-0) \Box Ω The spectral radius is defined as $r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|.$

Proposition *Let* $A \in \mathcal{L}(\mathcal{H})$ *. Then* (a) $r(A) = \lim_{n \to \infty} ||A^n||^{1/n}$, (b) $r(A) = ||A||$ *if A is normal.*

 OQ

Discrete and essential spectrum

- $\bullet \lambda \in \mathbb{C}$ is an eigenvalue of *A* if $A \lambda$ is not injective.
- ker($A \lambda$) is called the eigenspace of A belonging to the eigenvalue λ , a non-zero element *u* of ker($A - \lambda$) (i.e., $u \neq 0$ and $Au = \lambda u$ is called an eigenvector.

The discrete spectrum $\sigma_d(A) \subseteq \sigma(A)$ consists of isolated eigenvalues of *A* of finite multiplicity (i.e., ker $(A - \lambda)^{\mathcal{N}} = \mathsf{ker}(A - \lambda)^{\mathcal{N}+1}$ for some $N \in \mathbb{N}$ and dim ker $(A - \lambda)^N < \infty$).

Remark Eigenvalues of normal operators are semi-simple (i.e., $N = 1$).

The essential spectrum is defined as $\sigma_{e}(A) = \sigma(A) \setminus \sigma_{d}(A)$.

 Ω

Multiplication operators, I

Let (X, μ) be a measure space. Then each $g \in L^{\infty}(X, \mu)$ induces a bounded operator

$$
M_g\colon L^2(X,\mu)\to L^2(X,\mu),\quad u\mapsto g\cdot u
$$

(multiplication operator).

The essential range ran *g* consists of all $\lambda \in \mathbb{C}$ such that, for all $\epsilon > 0$,

$$
\mu\left(\{|g-\lambda|<\epsilon\}\right)>0.
$$

Lemma

(a) $\sigma(M_q) = \text{ran } g$.

(b) λ *is an eigenvalue of M_a if and only if* μ ({ $g = \lambda$ }) > 0*.*

 \equiv

 Ω

.

Classes of linear operators

Definition

An operator $A \in \mathcal{L}(\mathcal{H})$ is said to be normal if A and A^* commute, i.e., *A* [∗]*A* = *AA*[∗] . Special cases are

- ¹ (Self-adjoint operators) *A* = *A* ∗ ,
- 2 (Unitary operators) $A^{-1} = A^*$.

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ *be normal. Then*

- **1** A is self-adjoint if and only if $\sigma(A) \subseteq \mathbb{R}$,
- 2 A is unitary if and only if $\sigma(A) \subseteq \mathbb{S}^1 = \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \}.$

Remark One also has unitary operators $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ given by $U^* U = I_{\mathcal{H}}$ and *UU*[∗] = I_H, between different Hilbert spaces. Spectral properties do not change under unitary equivalence, i[.](#page-0-0)e., under the map $\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}'), A \mapsto UAU^*$ $\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}'), A \mapsto UAU^*$. OQ

Multiplication operators, II

Because of $(\mathit{M}_g)^*=\mathit{M}_{\bar{g}}$ and

$$
M_{\bar g}M_g=M_gM_{\bar g}=M_{|g|^2},
$$

multiplication operators are normal.

M^g is self-adjoint if and only if *g* is (essentially) real-valued, i.e., ran $g \subseteq \mathbb{R}$.

 OQ

Projections

Definition

 $P \in \mathcal{L}(\mathcal{H})$ is said to be an orthogonal projection if $P = P^* = P^2$.

The complementary projection is *P* [⊥] = I − *P*. *P* projects onto ran *P* and we have

$$
\mathcal{H}=\mathsf{ran}\, \boldsymbol{P} \oplus \mathsf{ran}\, (\mathsf{I} - \boldsymbol{P})\,,
$$

where ker $P = \text{ran } (I - P)$ and ker $(I - P) = \text{ran } P$.

There is a (complete) lattice structure on the set of orthogonal projections given by $P \le Q$ if ran $P \subseteq$ ran Q (equivalently, *P* = *PQ* = *QP*). Moreover, we call two projections *P*, *Q* orthogonal (and write $P \perp Q$) if $P \leq Q^{\perp}$ (equivalently, $PQ = QP = 0$).

- $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is said to be an isometry if $\|Ux\| = \|x\|$ for all $x \in \mathcal{H}$.
- $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is said to be a partial isometry if it is an isometry when restricted to $(\mathop{\sf ker} U)^{\perp}.$
- $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is a partial isometry if and only if U^*U and UU^* are projections. In this case, *U* maps unitarily from its initial space $(\mathsf{ker}\ U)^\perp = \mathsf{ran}(\,U^* \,U)$ onto its final space ran $U = \mathsf{ran}(\,UU^*).$

 Ω

イロト イ母 トイラト イラト

More on the essential spectrum

Theorem (Weyl's criterion)

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint,* $\lambda \in \mathbb{R}$. Then

- (a) $\lambda \in \sigma(A)$ *if and only if there is a sequence* $\{\varphi_n\} \subset \mathcal{H}$ *such that* $\|\varphi_n\| = 1$ *for all n and* $(A - \lambda)\varphi_n \to 0$ *in* H,
- (b) $\lambda \in \sigma_{\mathbf{e}}(A)$ *if and only if the sequence* $\{\varphi_n\}$ *in* (a) *can be chosen to be orthogonal (equivalently,* $\varphi_n \overset{w}{\rightarrow} 0$ *).*

Theorem (Weyl)

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint and* $B \in \mathcal{L}(\mathcal{H})$ *be compact. Then*

$$
\sigma_{e}(A)=\sigma_{e}(A+B).
$$

 \equiv

 Ω

イロト イ部 トイヨ トイヨト

Compact operators, I

Lemma

For $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, the following conditions are equivalent:

- (a) $\overline{AB_1(0)} \subset \mathcal{H}'$ is compact.
- (b) A takes bounded sets in H to relatively compact sets in H' .
- (c) *A takes weakly convergent sequences in* H *to strongly convergent* sequences in \mathcal{H}' .

In this case, *A* is said to be a compact operator. The set of all compact operators will be denoted by $\mathcal{K}(\mathcal{H},\mathcal{H}')$ and by $\mathcal{K}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'.$

 \equiv

 Ω

イロト イ母 トイラト イラト

Compact operators, II

Examples

- (a) Finite-rank operators are compact.
- (b) The identity $I_{\mathcal{H}} \in \mathcal{L}(\mathcal{H})$ is compact if and only if dim $\mathcal{H} < \infty$.

Proposition

- (a) $K(\mathcal{H}, \mathcal{H}')$ is norm closed in $\mathcal{L}(\mathcal{H}, \mathcal{H}')$.
- (b) If $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, $K \in \mathcal{K}(\mathcal{H}', \mathcal{H}'')$, and $B \in \mathcal{L}(\mathcal{H}', \mathcal{H}'')$, then *BKA* \in *K* (H, H'') .
- (c) *Every compact operator is the norm limit of a sequence of finite-rank operators.*

In particular, $\mathcal{K}(\mathcal{H})$ is a closed two-sided ideal in $\mathcal{L}(\mathcal{H})$.

 Ω

Riesz-Schauder theory

Theorem

Let $K \in \mathcal{K}(\mathcal{H})$ *. Then* $\sigma(K) \setminus \{0\}$ consists of isolated eigenvalues of *finite multiplicity.*

Corollary

Let K ∈ K(H) *be self-adjoint. Then* H *possesses an orthonormal basis* $\{\varphi_n\}$ *consisting of eigenvectors of K, i.e.,* $K\varphi_n = \lambda_n \varphi_n$ *for each n and some* $\lambda_n \in \mathbb{R}$ *. Moreover,* $\lambda_n \to 0$ *.*

 Ω

イロト イ押ト イヨト イヨト 一旦