Introduction to Spectral Theory First lecture: Bounded operators

Ingo Witt (Göttingen)

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

> Tbilisi State University September 17-21, 2018

Linear operators between Hilbert spaces

All Hilbert spaces considered in these lectures will be over ${\mathbb C}$ and be separable.

Let $\mathcal{H}, \mathcal{H}'$ be Hilbert spaces.

Lemma

For a linear operator A: $\mathcal{H} \to \mathcal{H}',$ the following conditions are equivalent:

- A is continuous,
- A is bounded, i.e., $||Ax|| \leq C||x||$ for some $C \geq 0$,

• graph $A = \{(x, Ax) \mid x \in \mathcal{H}\} \subset \mathcal{H} \times \mathcal{H}'$ is closed (closed graph theorem).

Remark The best constant *C* is $||A|| = \sup_{||x||=1} ||Ax|| = \sup_{||x||=1} |\langle Ax, y \rangle|$.

We write $\mathcal{L}(\mathcal{H}, \mathcal{H}')$ for the space of these linear operators A and $\mathcal{L}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'$.

$\mathcal{L}(\mathcal{H})$ as a C^* -algebra

 $\mathcal{L}(\mathcal{H})$ equipped with the operator norm $\| \|$ is a Banach algebra (in particular, $\|AB\| \le \|A\| \|B\|$ for $A, B \in \mathcal{L}(\mathcal{H})$).

Recall that the adjoint $A^* \in \mathcal{L}(\mathcal{H})$ of $A \in \mathcal{L}(\mathcal{H})$ is defined by

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad x, y \in \mathcal{H}.$$

With the involution $A \mapsto A^*$, $\mathcal{L}(\mathcal{H})$ is in fact a C^* -algebra (in particular, $||A^*A|| = ||A||^2$ for $A \in \mathcal{L}(\mathcal{H})$).

Objective of these lectures Understand the spectral theory of self-adjoint operators $A \in \mathcal{L}(\mathcal{H})$.

Remark One could equally well study the spectral theory of self-adjoint elements of an abstract unital C^* -algebra.

Topologies on $\mathcal{L}(\mathcal{H},\mathcal{H}')$

There are three natural topologies on $\mathcal{L}(\mathcal{H}, \mathcal{H}')$ of decreasing strength.

We define convergence of a sequence $\{A_n\} \subset \mathcal{L}(\mathcal{H}, \mathcal{H}')$ for each of these topologies:

(1)
$$A_n \rightarrow A$$
 if $||A - A_n|| \rightarrow 0$ (uniform operator or norm topology),

(2)
$$A_n \xrightarrow{s} A$$
 if $A_n x \to A x$ for each $x \in \mathcal{H}$ (strong operator topology),

③ $A_n \xrightarrow{w} A$ if $\langle A_n x, y \rangle \rightarrow \langle Ax, y \rangle$ for each $x, y \in \mathcal{H}$ (weak operator topology).

Theorem (Uniform boundedness principle)

Let $\{A_n\} \subset \mathcal{L}(\mathcal{H}, \mathcal{H}')$ be a sequence. Suppose that $\{\langle A_n x, y \rangle\} \subset \mathbb{C}$ converges for all $x \in \mathcal{H}, y \in \mathcal{H}'$. Then $A_n \xrightarrow{w} A$ for some $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$.

イロト イポト イヨト イヨト 二日

Resolvent and spectrum

Let $A \in \mathcal{L}(\mathcal{H})$.

Definition

- (1) $\lambda \in \mathbb{C}$ belongs to the resolvent set $\rho(A)$ if $(A \lambda)^{-1} \in \mathcal{L}(\mathcal{H})$.
- 2 The resolvent is $R(\lambda, A) = (A \lambda)^{-1}$ for $\lambda \in \rho(A)$.
- ③ The spectrum is $\sigma(A) = \mathbb{C} \setminus \rho(A)$.

Theorem

 $\sigma(A)$ is a non-empty, compact subset of \mathbb{C} contained in $B(0, ||A||) = \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||A||\}.$ The map $\rho(A) \rightarrow \mathcal{L}(\mathcal{H}), \lambda \mapsto R(\lambda, A)$ is holomorphic.

Proof For $\lambda > ||A||$, $R(\lambda, A) = -\sum_{j=0}^{\infty} \lambda^{-(j+1)} A^j$. For $\lambda \in \rho(A)$, $|\mu - \lambda| < ||R(\lambda, A)||^{-1}$, $R(\mu, A) = \sum_{j=0}^{\infty} (\mu - \lambda)^j R(\lambda, A)^{j+1}$. Finally, invoke Liouville's theorem to conclude that $\sigma(A) \neq \emptyset$.

Ingo Witt (Göttingen)

500

The spectral radius is defined as $r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|$.

Proposition Let $A \in \mathcal{L}(\mathcal{H})$. Then (a) $r(A) = \lim_{n \to \infty} ||A^n||^{1/n}$, (b) r(A) = ||A|| if A is normal.

Discrete and essential spectrum

- $\lambda \in \mathbb{C}$ is an eigenvalue of *A* if $A \lambda$ is not injective.
- ker(A λ) is called the eigenspace of A belonging to the eigenvalue λ, a non-zero element u of ker(A λ) (i.e., u ≠ 0 and Au = λu) is called an eigenvector.

The discrete spectrum $\sigma_d(A) \subseteq \sigma(A)$ consists of isolated eigenvalues of A of finite multiplicity (i.e., $\ker(A - \lambda)^N = \ker(A - \lambda)^{N+1}$ for some $N \in \mathbb{N}$ and dim $\ker(A - \lambda)^N < \infty$).

Remark Eigenvalues of normal operators are semi-simple (i.e., N = 1).

The essential spectrum is defined as $\sigma_{e}(A) = \sigma(A) \setminus \sigma_{d}(A)$.

Multiplication operators, I

Let (X, μ) be a measure space. Then each $g \in L^{\infty}(X, \mu)$ induces a bounded operator

$$M_g: L^2(X,\mu) \to L^2(X,\mu), \quad u \mapsto g \cdot u$$

(multiplication operator).

The essential range ran g consists of all $\lambda \in \mathbb{C}$ such that, for all $\epsilon > 0$,

$$\mu\left(\{|\boldsymbol{g}-\boldsymbol{\lambda}|<\epsilon\}\right)>\boldsymbol{0}.$$

Lemma

(a) $\sigma(M_g) = \operatorname{ran} g$.

(b) λ is an eigenvalue of M_g if and only if $\mu(\{g = \lambda\}) > 0$.

3

<ロト < 回ト < 回ト < 回ト

Classes of linear operators

Definition

An operator $A \in \mathcal{L}(\mathcal{H})$ is said to be normal if A and A^* commute, i.e., $A^*A = AA^*$. Special cases are

- (1) (Self-adjoint operators) $A = A^*$,
- (Unitary operators) $A^{-1} = A^*$.

Lemma

Let $A \in \mathcal{L}(\mathcal{H})$ be normal. Then

- ① A is self-adjoint if and only if $\sigma(A) \subseteq \mathbb{R}$,
- **a** *A is unitary if and only if* $\sigma(A) \subseteq \mathbb{S}^1 = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$

Remark One also has unitary operators $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ given by $U^* U = I_{\mathcal{H}}$ and $UU^* = I_{\mathcal{H}'}$ between different Hilbert spaces. Spectral properties do not change under unitary equivalence, i.e., under the map $\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}')$, $A \mapsto UAU^*$.

Multiplication operators, II

• Because of $(M_g)^* = M_{\bar{g}}$ and

$$M_{\bar{g}}M_g = M_g M_{\bar{g}} = M_{|g|^2},$$

multiplication operators are normal.

• M_g is self-adjoint if and only if g is (essentially) real-valued, i.e., ran $g \subseteq \mathbb{R}$.

Projections

Definition

 $P \in \mathcal{L}(\mathcal{H})$ is said to be an orthogonal projection if $P = P^* = P^2$.

The complementary projection is $P^{\perp} = I - P$. *P* projects onto ran *P* and we have

$$\mathcal{H}=\mathsf{ran}\, \pmb{P}\oplus\mathsf{ran}\,(\mathsf{I}-\pmb{P})\,,$$

where ker $P = \operatorname{ran} (I - P)$ and ker $(I - P) = \operatorname{ran} P$.

There is a (complete) lattice structure on the set of orthogonal projections given by $P \leq Q$ if ran $P \subseteq$ ran Q (equivalently, P = PQ = QP). Moreover, we call two projections P, Q orthogonal (and write $P \perp Q$) if $P \leq Q^{\perp}$ (equivalently, PQ = QP = 0).

- $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is said to be an isometry if ||Ux|| = ||x|| for all $x \in \mathcal{H}$.
- U ∈ L(H, H') is said to be a partial isometry if it is an isometry when restricted to (ker U)[⊥].
- U ∈ L(H, H') is a partial isometry if and only if U*U and UU* are projections. In this case, U maps unitarily from its initial space (ker U)[⊥] = ran(U*U) onto its final space ran U = ran(UU*).

200

イロト イポト イヨト イヨト

More on the essential spectrum

Theorem (Weyl's criterion)

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint, $\lambda \in \mathbb{R}$. Then

- (a) $\lambda \in \sigma(A)$ if and only if there is a sequence $\{\varphi_n\} \subset \mathcal{H}$ such that $\|\varphi_n\| = 1$ for all n and $(A \lambda)\varphi_n \to 0$ in \mathcal{H} ,
- (b) $\lambda \in \sigma_{e}(A)$ if and only if the sequence $\{\varphi_{n}\}$ in (a) can be chosen to be orthogonal (equivalently, $\varphi_{n} \xrightarrow{w} 0$).

Theorem (Weyl)

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint and $B \in \mathcal{L}(\mathcal{H})$ be compact. Then

$$\sigma_{\mathsf{e}}(\boldsymbol{A}) = \sigma_{\mathsf{e}}(\boldsymbol{A} + \boldsymbol{B}).$$

3

イロト イロト イヨト イヨト

Compact operators, I

Lemma

For $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, the following conditions are equivalent:

- (a) $\overline{AB_1(0)} \subset \mathcal{H}'$ is compact.
- (b) A takes bounded sets in \mathcal{H} to relatively compact sets in \mathcal{H}' .
- (c) A takes weakly convergent sequences in \mathcal{H} to strongly convergent sequences in \mathcal{H}' .

In this case, *A* is said to be a compact operator. The set of all compact operators will be denoted by $\mathcal{K}(\mathcal{H}, \mathcal{H}')$ and by $\mathcal{K}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'$.

3

イロト イポト イヨト イヨト

Compact operators, II

Examples

- (a) Finite-rank operators are compact.
- (b) The identity $I_{\mathcal{H}} \in \mathcal{L}(\mathcal{H})$ is compact if and only if dim $\mathcal{H} < \infty$.

Proposition

- (a) $\mathcal{K}(\mathcal{H}, \mathcal{H}')$ is norm closed in $\mathcal{L}(\mathcal{H}, \mathcal{H}')$.
- (b) If $A \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, $K \in \mathcal{K}(\mathcal{H}', \mathcal{H}'')$, and $B \in \mathcal{L}(\mathcal{H}', \mathcal{H}'')$, then $BKA \in \mathcal{K}(\mathcal{H}, \mathcal{H}'')$.
- (c) Every compact operator is the norm limit of a sequence of finite-rank operators.

In particular, $\mathcal{K}(\mathcal{H})$ is a closed two-sided ideal in $\mathcal{L}(\mathcal{H})$.

Ingo Witt (Göttingen)

Theorem

Let $K \in \mathcal{K}(\mathcal{H})$. Then $\sigma(K) \setminus \{0\}$ consists of isolated eigenvalues of finite multiplicity.

Corollary

Let $K \in \mathcal{K}(\mathcal{H})$ be self-adjoint. Then \mathcal{H} possesses an orthonormal basis $\{\varphi_n\}$ consisting of eigenvectors of K, i.e., $K\varphi_n = \lambda_n\varphi_n$ for each n and some $\lambda_n \in \mathbb{R}$. Moreover, $\lambda_n \to 0$.