Introduction to Spectral Theory Third lecture: Some applications

Ingo Witt (Gottingen) ¨

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

> Tbilisi State University September 17-21, 2018

 Ω

Stone's formula

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ *be self-adjoint. Then, for any a* < *b,*

$$
\frac{1}{2}\left(E_{[a,b]}+E_{(a,b)}\right)=s\text{-}\lim_{\epsilon\to+0}\frac{1}{2\pi\mathrm{i}}\int_{a}^{b}\left(R(\lambda+\mathrm{i}\epsilon,A)-R(\lambda-\mathrm{i}\epsilon,A)\right)d\lambda.
$$

Proof Compute

$$
f_{\epsilon}(\mu) = \frac{1}{2\pi i} \int_{a}^{b} \left(\frac{1}{\mu - \lambda - i\epsilon} - \frac{1}{\mu - \lambda + i\epsilon} \right) d\lambda \xrightarrow{\epsilon \to +0} \begin{cases} 0, & \mu \notin [a, b], \\ 1/2, & \mu = a \text{ or } \mu = b, \\ 1, & \mu \in (a, b). \end{cases}
$$

In view of $\sup_{0<\epsilon\leq 1}$ $||f_\epsilon||_\infty<\infty$, the result follows by invoking the functional calculus. \Box

 \equiv

 OQ

イロト イ押ト イラト イラト

The lattice Laplacian

Take the Hilbert space ${\mathcal H}$ to be $\ell^2({\mathbb Z}^d)$ equipped with the counting measure. As *A* we take the operator

$$
(\mathcal{A}\psi)(n)=\sum_{|m-n|=1}\psi(m),\quad n\in\mathbb{Z}^d.
$$

Note that the discrete Laplacian is −2*d* + *A* (approximation of the continuous Laplacian by second differences); we have chosen to ignore the shift by 2*d*.

Proposition

The spectrum of A equals [−2*d*, 2*d*]*, and it is purely absolutely continuous.*

 Ω

Sketch of proof

Let $F\colon L^2([0,2\pi]^d) \to \ell^2({\mathbb Z}^d)$ be the (periodic) Fourier transform, i.e.,

$$
(Ff)(n)=(2\pi)^{-d}\int_{[0,2\pi]^d}e^{-ix\cdot n}f(x)\,dx,\quad n\in\mathbb{Z}^d.
$$

F [∗] provides a spectral resolution of *A*. Indeed, a direct calculation reveals that *d*

$$
F^*AF
$$
 is multiplication by $2\sum_{j=1}^a \cos x_j$,

and the result follows. \Box

 \equiv

 OQ

イロト イ押ト イヨト イヨト

The Schrödinger equation

The initial-value problem for the Schrödinger equation is

 $i\partial_t u = Au$, $u(0) = \varphi$,

where $A: \mathcal{D}(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ is a self-adjoint operator on \mathcal{H} and $\varphi\in \mathscr{D}(\pmb{A}).$ Its unique solution $\pmb{\iota}\pmb{\iota}\in \mathscr{C}(\mathbb{R}; \mathscr{D}(\pmb{A}))\cap \mathscr{C}^1(\mathbb{R};\mathcal{H})$ is given by

$$
u(t)=e^{-itA}\varphi, \ \ t\in\mathbb{R}.
$$

By Stone's theorem, $\{{\rm e}^{-{\rm i} t{\cal A}}\}_{t\in\mathbb{R}}$ is a strongly continuous unitary group on H (norm continuous if $A \in \mathcal{L}(\mathcal{H})$).

Remark The solution *u* to the inhomogeneous problem

$$
i\partial_t u = Au + f(t), \ \ u(0) = \varphi,
$$

is given by

$$
u(t) = e^{-itA}\varphi - i\int_0^t e^{-i(t-s)A}f(s) ds.
$$

 $A \cup B \cup A \cup A$

Long-term behavior

Basic fact Spectral properties of *A* determine dynamical properties of the Schrödinger evolution as $t \to \pm \infty$.

 $(\textsf{Bound states})\ \ \textsf{Let}\ A\varphi=\lambda\varphi.$ Then $\mathsf{e}^{-\mathsf{i} t\mathsf{A}}\varphi=\mathsf{e}^{-\mathsf{i} t\lambda}\varphi$ and

 $\langle Be^{-itA}\varphi, e^{-itA}\varphi\rangle$ is independent of *t*.

Here, *B* is a self-adjoint operator that is relatively bounded with respect to *A* (i.e., $\mathscr{D}(B) \supset \mathscr{D}(A)$).

(RAGE theorem, after Ruelle, Amrein, Georgescu, and Enss) Let $\psi \in \mathcal{H}_{\text{ac}}(A) \oplus \mathcal{H}_{\text{sc}}(A)$ and $B \in \mathcal{L}(\mathcal{H})$ be relatively compact with respect to *A*. Then

$$
\frac{1}{2T}\int_{-T}^{T}\|B\mathrm{e}^{-\mathrm{i} tA}\psi\|^2\,dt\to 0\ \ \text{as}\ \ T\to\infty.
$$

 $A \cup B \cup A \cup A$

Fredholm operators **Definition**

 $T \in \mathcal{L}(\mathcal{H})$ is said to be Fredholm if dim ker $T < \infty$ and dim coker $T < \infty$ (recall that coker $T = \mathcal{H}/\text{ran } T$). In this case, ran $T \subset \mathcal{H}$ is closed and the integer

$$
ind T = dim ker T - dim coker T
$$

is called the index of *T*.

We write $\mathcal{F}(\mathcal{H},\mathcal{H}')$ for the space of Fredholm operators and $\mathcal{F}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'$.

Remarks

(a) Let H , H' be finite-dimensional. Then, for any linear operator $T: H \rightarrow H'$,

$$
\operatorname{ind} T = \dim \mathcal{H} - \dim \mathcal{H}'.
$$

(b) Every self-adjoint Fredholm operator has index zero.

 OQ

イロト イ何 トイヨ トイヨ トーヨー

Fredholm operators

Basic properties

Theorem

(a) If $T \in \mathcal{F}(\mathcal{H},\mathcal{H}')$, $S \in \mathcal{F}(\mathcal{H}',\mathcal{H}'')$, then $ST \in \mathcal{F}(\mathcal{H},\mathcal{H}'')$ and

 $ind(ST) = ind(T) + ind(S)$.

(b) Let $T \in \mathcal{F}(\mathcal{H}, \mathcal{H}')$ and $K \in \mathcal{K}(\mathcal{H}, \mathcal{H}')$. Then $T + K \in \mathcal{F}(\mathcal{H}, \mathcal{H}')$ and

 $ind(T + K) = ind T$.

(c) $\mathcal{F}(\mathcal{H}, \mathcal{H}') \subseteq \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is norm open and the map

 $ind: \mathcal{F}(\mathcal{H}, \mathcal{H}') \rightarrow \mathbb{Z}$

is continuous (*i.e., constant on connected components*)*.*

 OQ

K ロ H K (日) - K 경 H K 경 H (日)

Fredholm operators

Further properties

Theorem

 $T \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ *is a Fredholm operator if and only if there exists an operator* $S \in \mathcal{L}(\mathcal{H}', \mathcal{H})$ *such that*

$$
ST-I_{\mathcal{H}}\in \mathcal{K}(\mathcal{H}),\quad TS-I_{\mathcal{H}'}\in \mathcal{K}(\mathcal{H}').
$$

S is then called a (Fredholm) parametrix to *T*. Note that *S* is a Fredholm operator as well, and $\text{ind } S = - \text{ ind } T$.

Typical example Elliptic differential or pseudo-differential operators on closed manifolds acting between Sobolev spaces.

 Ω

イロト イ押ト イヨト イヨト

Spectral flow **Heuristics**

Let dim $\mathcal{H} = \infty$. Define

 $\mathcal{F}_{\text{sa}}(\mathcal{H}) = \{T \in \mathcal{F}(\mathcal{H}) \mid T \text{ is self-adjoint} \}.$

For $T \in \mathcal{F}_{\text{sa}}(\mathcal{H})$, there exists an $\epsilon > 0$ such that $\sigma_e(T) \cap (-\epsilon, \epsilon) = \emptyset$. Given a norm continuous path γ : [0, 1] \rightarrow $\mathcal{F}_{\text{sa}}(\mathcal{H})$, this property allows to define the spectral flow sf(γ) as the net number of eigenvalues (counted with multiplicities) which pass through zero in the positive direction as *t* goes from 0 to 1.

Lemma

Let $T \in \mathcal{F}_{sa}(\mathcal{H})$. Then there exist a neighborhood N of T in $\mathcal{F}_{sa}(\mathcal{H})$ *and an a* > 0 *so that S* 7→ χ[−*a*,*a*] (*S*) *is a norm continuous, finite-rank projection-valued function on* N *.*

 \equiv

 Ω

イロト イ母ト イミト イミト

Spectral flow **Definition**

Now given a norm continuous path $\gamma: [0, 1] \to \mathcal{F}_{sa}(\mathcal{H})$, one finds a partition $0 = t_0 < t_1 < \ldots < t_{k-1} < t_k = 1$ and numbers $a_i > 0$ for $j = 1, \ldots, k$ so that the function $t\mapsto \chi_{[-a_j,a_j]}(\gamma(t))$ is norm continuous and of finite rank on the interval $[t_{j-1},t_j].$

Definition

We set

$$
\mathsf{sf}(\gamma) = \sum_{j=1}^k \Big(\mathsf{rank} \big(\chi_{[\mathsf{0},a_j]}(\gamma(t_j)) \big) - \mathsf{rank} \big(\chi_{[\mathsf{0},a_j]}(\gamma(t_{j-1})) \big) \Big).
$$

Lemma

The integer sf(γ) *is well-defined, i.e., it is independent of all the choices involved in its definition* (*including the parametrization of* γ *when keeping the orientation*)*.*

Spectral flow **Properties**

Theorem

Spectral flow has the following properties:

- (a) (Homotopy invariance) $sf(\gamma_0) = sf(\gamma_1)$ *if* γ_0 , γ_1 *are homotopic in* Fsa(H) *with fixed endpoints.*
- (b) (Concatenation) $sf(\gamma_1 \circ \gamma_0) = sf(\gamma_0) + sf(\gamma_1)$ *if* $\gamma_0(1) = \gamma_1(0)$ *.*
- (c) (Unitary invariance) $sf(U_{\gamma}U[*]) = sf(\gamma)$ *for each unitary operator U.*
- (d) (Additivity) $sf(\gamma_0 \oplus \gamma_1) = sf(\gamma_0) + sf(\gamma_1)$.
- (e) (Triviality) sf(γ) = 0 *if* 0 $\notin \sigma(\gamma(t))$ *for all t* \in [0, 1]*.*

 OQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Components of $\mathcal{F}_{sa}(\mathcal{H})$

 $\mathcal{F}_{\text{sa}}(\mathcal{H})$ has three components determined by the essential spectrum:

$$
\mathcal{F}^{\pm}_{sa}(\mathcal{H}) = \{ T \in \mathcal{F}_{sa}(\mathcal{H}) \mid \sigma_e(T) \subset \mathbb{R}_{\pm} \},
$$

$$
\mathcal{F}^0_{sa}(\mathcal{H}) = \{ T \in \mathcal{F}_{sa}(\mathcal{H}) \mid \sigma_e(T) \cap \mathbb{R}_{\pm} \neq \emptyset \}.
$$

 $\mathcal{F}^\pm_\mathsf{sa}(\mathcal{H})$ are contractible.

Theorem

The map

 $\mathsf{sf} \colon \pi_1(\mathcal{F}^0_\mathsf{sa}(\mathcal{H})) \to \mathbb{Z}$

induced by spectral flow is an isomorphism.

 \equiv Ω

イロト イ母 トイラト イラト