Introduction to Spectral Theory Third lecture: Some applications

Ingo Witt (Göttingen)

Summer School on Operator Algebras, Spectral Theory and Applications to Topological Insulators

> Tbilisi State University September 17-21, 2018

Stone's formula

Theorem

Let $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint. Then, for any a < b,

$$\frac{1}{2}\left(E_{[a,b]}+E_{(a,b)}\right)=s\cdot\lim_{\epsilon\to+0}\frac{1}{2\pi\mathrm{i}}\int_{a}^{b}\left(R(\lambda+\mathrm{i}\epsilon,A)-R(\lambda-\mathrm{i}\epsilon,A)\right)\mathrm{d}\lambda.$$

Proof Compute

$$f_{\epsilon}(\mu) = \frac{1}{2\pi i} \int_{a}^{b} \left(\frac{1}{\mu - \lambda - i\epsilon} - \frac{1}{\mu - \lambda + i\epsilon} \right) d\lambda \xrightarrow{\epsilon \to +0} \begin{cases} 0, & \mu \notin [a, b], \\ 1/2, & \mu = a \text{ or } \mu = b, \\ 1, & \mu \in (a, b). \end{cases}$$

In view of $\sup_{0<\epsilon\leq 1}\|f_\epsilon\|_\infty<\infty,$ the result follows by invoking the functional calculus. $\ \Box$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

The lattice Laplacian

Take the Hilbert space \mathcal{H} to be $\ell^2(\mathbb{Z}^d)$ equipped with the counting measure. As *A* we take the operator

$$(A\psi)(n) = \sum_{|m-n|=1} \psi(m), \quad n \in \mathbb{Z}^d.$$

Note that the discrete Laplacian is -2d + A (approximation of the continuous Laplacian by second differences); we have chosen to ignore the shift by 2d.

Proposition

The spectrum of A equals [-2d, 2d], and it is purely absolutely continuous.

Ingo Witt (Gotting	gen)	
--------------------	------	--

200

Sketch of proof

Let $F: L^2([0, 2\pi]^d) \to \ell^2(\mathbb{Z}^d)$ be the (periodic) Fourier transform, i.e.,

$$(Ff)(n)=(2\pi)^{-d}\int_{[0,2\pi]^d}\mathrm{e}^{-\mathrm{i}x\cdot n}f(x)\,\mathrm{d}x,\quad n\in\mathbb{Z}^d.$$

 F^* provides a spectral resolution of *A*. Indeed, a direct calculation reveals that

$$F^*AF$$
 is multiplication by $2\sum_{j=1}^{a} \cos x_j$,

and the result follows. \Box

The Schrödinger equation

The initial-value problem for the Schrödinger equation is

 $i\partial_t u = Au, \ u(0) = \varphi,$

where $A: \mathscr{D}(A) \subseteq \mathcal{H} \to \mathcal{H}$ is a self-adjoint operator on \mathcal{H} and $\varphi \in \mathscr{D}(A)$. Its unique solution $u \in \mathscr{C}(\mathbb{R}; \mathscr{D}(A)) \cap \mathscr{C}^{1}(\mathbb{R}; \mathcal{H})$ is given by

$$u(t) = e^{-itA}\varphi, t \in \mathbb{R}.$$

By Stone's theorem, $\{e^{-itA}\}_{t \in \mathbb{R}}$ is a strongly continuous unitary group on \mathcal{H} (norm continuous if $A \in \mathcal{L}(\mathcal{H})$).

Remark The solution *u* to the inhomogeneous problem

$$i\partial_t u = Au + f(t), \ u(0) = \varphi,$$

is given by

$$u(t) = e^{-itA}\varphi - i\int_0^t e^{-i(t-s)A}f(s)\,ds.$$

Ingo Witt (Göttingen)

Long-term behavior

Basic fact Spectral properties of *A* determine dynamical properties of the Schrödinger evolution as $t \to \pm \infty$.

• (Bound states) Let $A\varphi = \lambda \varphi$. Then $e^{-itA}\varphi = e^{-it\lambda}\varphi$ and

 $\langle Be^{-itA}\varphi, e^{-itA}\varphi \rangle$ is independent of *t*.

Here, *B* is a self-adjoint operator that is relatively bounded with respect to *A* (i.e., $\mathscr{D}(B) \supseteq \mathscr{D}(A)$).

• (RAGE theorem, after Ruelle, Amrein, Georgescu, and Enss) Let $\psi \in \mathcal{H}_{ac}(A) \oplus \mathcal{H}_{sc}(A)$ and $B \in \mathcal{L}(\mathcal{H})$ be relatively compact with respect to *A*. Then

$$\frac{1}{2T}\int_{-T}^{T}\|B\mathrm{e}^{-\mathrm{i}tA}\psi\|^2\,dt\to 0 \ \text{as}\ T\to\infty.$$

Fredholm operators

 $T \in \mathcal{L}(\mathcal{H})$ is said to be Fredholm if dim ker $T < \infty$ and dim coker $T < \infty$ (recall that coker $T = \mathcal{H}/\operatorname{ran} T$). In this case, ran $T \subseteq \mathcal{H}$ is closed and the integer

ind
$$T = \dim \ker T - \dim \operatorname{coker} T$$

is called the index of T.

We write $\mathcal{F}(\mathcal{H}, \mathcal{H}')$ for the space of Fredholm operators and $\mathcal{F}(\mathcal{H})$ in case $\mathcal{H} = \mathcal{H}'$.

Remarks

(a) Let $\mathcal{H}, \mathcal{H}'$ be finite-dimensional. Then, for any linear operator $T \colon \mathcal{H} \to \mathcal{H}'$,

ind $T = \dim \mathcal{H} - \dim \mathcal{H}'$.

(b) Every self-adjoint Fredholm operator has index zero.

Ingo Witt (Göttingen)

Fredholm operators

Basic properties

Theorem

(a) If $T \in \mathcal{F}(\mathcal{H}, \mathcal{H}')$, $S \in \mathcal{F}(\mathcal{H}', \mathcal{H}'')$, then $ST \in \mathcal{F}(\mathcal{H}, \mathcal{H}'')$ and

 $\operatorname{ind}(ST) = \operatorname{ind}(T) + \operatorname{ind}(S).$

(b) Let $T \in \mathcal{F}(\mathcal{H}, \mathcal{H}')$ and $K \in \mathcal{K}(\mathcal{H}, \mathcal{H}')$. Then $T + K \in \mathcal{F}(\mathcal{H}, \mathcal{H}')$ and

 $\operatorname{ind}(T+K) = \operatorname{ind} T.$

(c) $\mathcal{F}(\mathcal{H},\mathcal{H}') \subseteq \mathcal{L}(\mathcal{H},\mathcal{H}')$ is norm open and the map

 $\mathsf{ind}\colon \mathcal{F}(\mathcal{H},\mathcal{H}')\to \mathbb{Z}$

is continuous (i.e., constant on connected components).

Ingo Witt (Göttingen)

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fredholm operators

Further properties

Theorem

 $T \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is a Fredholm operator if and only if there exists an operator $S \in \mathcal{L}(\mathcal{H}', \mathcal{H})$ such that

$$ST - I_{\mathcal{H}} \in \mathcal{K}(\mathcal{H}), \quad TS - I_{\mathcal{H}'} \in \mathcal{K}(\mathcal{H}').$$

S is then called a (Fredholm) parametrix to *T*. Note that *S* is a Fredholm operator as well, and $\operatorname{ind} S = -\operatorname{ind} T$.

Typical example Elliptic differential or pseudo-differential operators on closed manifolds acting between Sobolev spaces.

3

Spectral flow

Heuristics

Let dim $\mathcal{H} = \infty$. Define

 $\mathcal{F}_{sa}(\mathcal{H}) = \{T \in \mathcal{F}(\mathcal{H}) \mid T \text{ is self-adjoint}\}.$

For $T \in \mathcal{F}_{sa}(\mathcal{H})$, there exists an $\epsilon > 0$ such that $\sigma_e(T) \cap (-\epsilon, \epsilon) = \emptyset$. Given a norm continuous path $\gamma : [0, 1] \to \mathcal{F}_{sa}(\mathcal{H})$, this property allows to define the spectral flow $sf(\gamma)$ as the net number of eigenvalues (counted with multiplicities) which pass through zero in the positive direction as *t* goes from 0 to 1.

Lemma

Let $T \in \mathcal{F}_{sa}(\mathcal{H})$. Then there exist a neighborhood \mathcal{N} of T in $\mathcal{F}_{sa}(\mathcal{H})$ and an a > 0 so that $S \mapsto \chi_{[-a,a]}(S)$ is a norm continuous, finite-rank projection-valued function on \mathcal{N} .

Э

- コ ト - (同 ト - (回 ト -)

Spectral flow

Definition

Now given a norm continuous path $\gamma: [0, 1] \to \mathcal{F}_{sa}(\mathcal{H})$, one finds a partition $0 = t_0 < t_1 < \ldots < t_{k-1} < t_k = 1$ and numbers $a_j > 0$ for $j = 1, \ldots, k$ so that the function $t \mapsto \chi_{[-a_j, a_j]}(\gamma(t))$ is norm continuous and of finite rank on the interval $[t_{j-1}, t_j]$.

Definition

We set

$$\mathsf{sf}(\gamma) = \sum_{j=1}^{k} \Big(\mathsf{rank}\big(\chi_{[0,a_j]}(\gamma(t_j))\big) - \mathsf{rank}\big(\chi_{[0,a_j]}(\gamma(t_{j-1}))\big) \Big).$$

Lemma

The integer $sf(\gamma)$ is well-defined, i.e., it is independent of all the choices involved in its definition (including the parametrization of γ when keeping the orientation).

Ingo Witt (Göttingen)

Spectral Theory, III

Spectral flow

Properties

Theorem

Spectral flow has the following properties:

- (a) (Homotopy invariance) $sf(\gamma_0) = sf(\gamma_1)$ if γ_0 , γ_1 are homotopic in $\mathcal{F}_{sa}(\mathcal{H})$ with fixed endpoints.
- (b) (Concatenation) $sf(\gamma_1 \circ \gamma_0) = sf(\gamma_0) + sf(\gamma_1)$ if $\gamma_0(1) = \gamma_1(0)$.
- (c) (Unitary invariance) $sf(U\gamma U^*) = sf(\gamma)$ for each unitary operator U.
- (d) (Additivity) $sf(\gamma_0 \oplus \gamma_1) = sf(\gamma_0) + sf(\gamma_1)$.
- (e) (Triviality) $sf(\gamma) = 0$ if $0 \notin \sigma(\gamma(t))$ for all $t \in [0, 1]$.

Components of $\mathcal{F}_{sa}(\mathcal{H})$

 $\mathcal{F}_{sa}(\mathcal{H})$ has three components determined by the essential spectrum:

$$\begin{aligned} \mathcal{F}_{\mathsf{sa}}^{\pm}(\mathcal{H}) &= \{ T \in \mathcal{F}_{\mathsf{sa}}(\mathcal{H}) \mid \sigma_{\mathsf{e}}(T) \subset \mathbb{R}_{\pm} \}, \\ \mathcal{F}_{\mathsf{sa}}^{\mathsf{0}}(\mathcal{H}) &= \{ T \in \mathcal{F}_{\mathsf{sa}}(\mathcal{H}) \mid \sigma_{\mathsf{e}}(T) \cap \mathbb{R}_{\pm} \neq \emptyset \}. \end{aligned}$$

 $\mathcal{F}_{sa}^{\pm}(\mathcal{H})$ are contractible.

Theorem

The map

 $\operatorname{sf}: \pi_1(\mathcal{F}^0_{\operatorname{sa}}(\mathcal{H})) \to \mathbb{Z}$

induced by spectral flow is an isomorphism.

Ingo Witt (Gi	ottingen)
---------------	-----------

3