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Definitions and notations

Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let
m := (m0,m1....) denote a sequence of the positive integers not less
than 2. Denote by Zmk := Z�mkZ = {[0] , [1] , ..., [mk − 1]} the
addition group of integers modulo mk .
Define the group Gm as the complete direct product of the groups Zmi

with the product of the discrete topologies of Zmj
,s.

The direct product µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk )

is the Haar measure on Gm with µ (Gm) = 1.

Double Vilenkin-Fourier Series ...



Definitions and notations

The elements of Gm are represented by sequences

x :=
(
x0, x1, ..., xj , ...

)
(xk ∈ Zmk ) .

If the sequence m is bounded then Gm is called a bounded Vilenkin
group, else it is called an unbounded one.
If we define the so-called generalized number system based on m in
the following way :

M0 := 1,Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as

n =
∞∑

j=0

njMj
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Definitions and notations

Next, we introduce on Gm an ortonormal systems which are called the
Vilenkin systems.
At first define the complex valued function rk (x) : Gm → C, The
generalized Rademacher functions as

rk (x) := exp (2πixk/mk )
(

i2 = −1, x ∈ Gm, k ∈ N
)
.

Now define the Vilenkin systems ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞∏

k=0

rnk
k (x) (n ∈ N) .
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Definitions and notations

The group
G2

m := Gm ×Gm

is called a two-dimensional Vilenkin group.
Two-dimensional systems: The Kronecker product (ψn,m : n,m ∈ N) of
two Vilenkin systems, where

ψn,m

(
x1, x2

)
= ψn

(
x1
)
ψm

(
x2
)
.

Two-dimensional Vilenkin-Fourier coefficient:

f̂ (n,m) :=

∫
G2

m

fψn,m (n,m ∈ N)

Rectangular partial sum of the Vilenkin-Fourier series

Sn,m(f ; x1, x2) :=
n−1∑
k=0

m−1∑
i=0

f̂ (k , i)ψk ,i(x1, x2).
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Historical notes

Jordan C. Sur la series de Fourier. C.R. Acad. Sci. Paris. 92(1881), 228-230.

Definition
We say that the function f has Bounded variation and write f ∈ BV , if

V (f ) <∞.

Theorem
Let f ∈ L1 and f ∈ BV. Then

Snf (x)→ (f (x + 0) + f (x − 0))/2, when n→∞.
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Historical notes

Hardy G. H. On double Fourier series and especially which represent the double zeta function with real and incommensurable

parameters. Quart. J. Math. Oxford Ser. 37(1906), 53-79.

Definition
We say that the function f has Bounded variation in the sense of Hardy
and write f ∈ BV , if

V (f ) := V1(f ) + V2(f ) + V1,2(f ) <∞.

Theorem
Let f ∈ L1 and f ∈ BV. Then

Sn1,n2 f (x , y)→ 1
4

∑
f (x ± 0, y ± 0), when n1,n2 →∞.
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Historical notes

Goginava U. On the uniform convergence of multiple trigonometric Fourier series. East J. Approx. 3, 5(1999), 253-266.

Definition
We say that the function f has Bounded Partial variation and write
f ∈ PBV , if

V (f ) := V1(f ) + V2(f ) <∞.

Theorem
Let f ∈ L1 and f ∈ PBV. If limits f (x ± 0, y ± 0) exist, then

Sn1,n2 f (x , y)→ 1
4

∑
f (x ± 0, y ± 0), when n1,n2 →∞.
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New result

Baramidze L., Uniform convergence of double Vilenkin-Fourier series, (in press).

Theorem

Let f ∈ C
(
G2) and the following conditions hold

lim
k→∞

Mk−1∑
α=1

1
α

∣∣∣∆(1)
k f

(
x − z(k)

α , y
)∣∣∣ = 0, (1)

lim
l→∞

Ml−1∑
β=1

1
β

∣∣∣∆(2)
l f

(
x , y − z(l)

β

)∣∣∣ = 0, (2)

lim
l,k→∞

Mk−1∑
α=1

Ml−1∑
β=1

1
α

1
β

∣∣∣∆(1,2)
k ,l f

(
x − z(k)

α , y − z(l)
β

)∣∣∣ = 0 (3)

uniformly with respect to (x , y) ∈ G2. Then the double Vilenkin-Fourier
series of function f converges uniformly on G2.
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New result

Theorem

Let f be a continuous function on G2 and f ∈ PBO
(
G2) . Then the

Fourier series of f converges uniformly on G2.

Corollary

Let f be a continuous function on G2 and f ∈ BO
(
G2) . Then the

Fourier series of f converges uniformly on G2.
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