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Abstract 
There is widespread consensus that agricultural technology has an important role to play for 
poverty reduction and sustainable development. There is less consensus, however, about the 
types of technologies that are best suited for smallholder farmers in Africa. While some consider 
natural resource management (NRM) technologies as most appropriate, others propagate input 
intensification with a stronger role of the private sector. In the public debate, the two strategies 
are often perceived as incompatible. Most existing adoption studies focus on individual 
technologies, so that comparisons across technologies in the same context are not easily possible. 
We use representative data from maize-producing households in Kenya and a multivariate probit 
model to analyze the adoption of different types of technologies simultaneously. Results indicate 
that NRM technologies and strategies that build on external inputs are not incompatible. 
Interesting complementarities exist, which are not yet sufficiently exploited, because many 
organizations promote either one type of technology or the other, but rarely a combination of 
both. 
 
JEL classifications: O13, O33, Q12, Q16 
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Tradeoffs and Complementarities in the Adoption of Improved Seeds, 
Fertilizer, and Natural Resource Management Technologies in Kenya 

 

1. Introduction 

Growth in the agricultural sector is key to alleviating poverty and food insecurity in 

developing countries (World Bank, 2007). In this connection, technological innovation plays an 

important role. Agricultural technologies can help to increase output and thus improve access to 

food, as experience with the green revolution has demonstrated (Evenson and Gollin, 2003). In 

addition, agricultural technologies can contribute to poverty reduction, by raising the incomes of 

farm households and, in some cases, providing new employment opportunities for landless 

laborers (Winters et al., 1998; De Janvry and Sadoulet, 2001; Minten and Barrett, 2008; Noltze 

et al., 2013). However, especially in the African small farm sector, adoption rates of agricultural 

technologies remain quite low. There is also a lively debate about which type of technology is 

most appropriate to foster sustainable development in the small farm sector. While some 

consider low-external input strategies as most suitable (IAASTD, 2009), others suggest models 

of input intensification with a stronger role of the private sector (Pingali, 2007). 

Low-external input strategies involve different agronomic practices, such as conservation 

tillage, other soil and water management techniques, and use of organic manure. Such improved 

agronomic practices are often referred to as natural resource management (NRM) technologies. 

Input intensification strategies, on the other hand, place higher emphasis on the use of improved 

seeds, mineral fertilizer, irrigation, and other productivity-enhancing inputs. Unfortunately, in 

the public debate the two strategies are often seen as two incompatible paradigms. Entrenched 

views by advocates of both paradigms are sometimes also reflected in the design of development 

projects that promote one or the other type of technologies, but rarely a combination of both. In 
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reality, the two strategies are not incompatible. For instance, combining conservation agriculture 

with improved seeds and other external inputs can lead to positive synergistic effects (Kassie et 

al., 2015). Rather than searching for a general blueprint, appropriate strategies will differ from 

one situation to another, depending on local agroecological, socioeconomic, and market 

conditions. 

More research is needed to better understand which technologies, and combinations of 

technologies, are adopted in certain situations and how sustainable innovation could be 

promoted. Most existing studies focus on the adoption of one specific type of technology, such 

as improved seeds (Nkonya et al., 1997; Becerril and Abdulai, 2010; Smale and Olwande, 2014), 

mineral fertilizer (Lambrecht et al., 2014), conservation agriculture (Kassie et al., 2010; Wollni 

et al., 2010), or other soil conservation techniques (Gebremedhin and Swinton, 2003). The data 

and methodologies used are often different, so that results are not easily comparable. While 

focusing on individual technologies is useful for many questions, studies that look across 

different types of technologies are also important to gain a broader picture, be able to compare, 

and identify complementarities and tradeoffs. Here, we intend to contribute in this direction by 

analyzing the adoption of multiple technologies among smallholder farmers in Kenya. 

The analysis builds on a large, nationally representative data set of maize-growing farms 

in Kenya. Maize is grown in almost all of the country’s agroecological zones, primarily by 

smallholders (Smale and Olwande, 2014). We specify and estimate a multivariate probit model 

that accounts for the fact that farmers make multiple adoption decisions simultaneously 

(Dorfman, 1996). In addition to farm, household, and institutional variables, we include plot-

level variables, such as soil fertility and slope, as covariates in the adoption model. Noltze et al. 

(2012) showed that plot-level factors may significantly influence the adoption of NRM 
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technologies in particular. Finally, we analyze how the adoption of different technologies 

correlates and how such correlation, or lack thereof, can be explained. 

 

2. Types of technologies and factors influencing adoption 

2.1. Input-intensive and NRM technologies 

There are two broad types of technologies that are promoted for use by farmers in Kenya 

and other developing countries. The first type are technologies that build on external inputs such 

as improved seeds, chemical fertilizer, pesticides, and irrigation. In the Kenyan small farm 

sector, irrigation and pesticides are rarely used for maize production, so we concentrate on 

improved maize seeds and mineral fertilizer. Improved maize seeds include maize hybrids and 

open-pollinating varieties (OPVs) developed by private and public sector breeding programs. 

The second type of technologies are NRM practices, such as conservation agriculture, soil and 

water management techniques, and use of organic manure. The concrete NRM technologies 

included in this study are described in the following. 

NRM strategies are mainly developed to deal with environmental stresses, such land 

degradation and nutrient depletion. Soil and water management practices such as constructing 

terraces or soil bunds are promoted to curb problems of soil erosion. Terraces are constructed 

walls that retain embankments of soil. The construction involves preparing a base for the wall, 

transporting construction rocks, and carefully layering the stones. Soil bunds, on the other hand, 

are embankments made by ridging soil on the lower side of a ditch along a slope contour 

(Gebremedhin and Swinton, 2003). Soil bunds can be constructed by hand digging or plowing, 

which is cheaper than building stone terraces but usually also less effective in terms of reducing 

water erosion. We consider both technologies in the adoption analysis. 
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Conservation agriculture aims at decreasing disturbance of the soil structure to reduce 

erosion and improve water and nutrient management. Conservation agriculture involves three 

components, namely reduced tillage (zero/minimum tillage), permanent soil cover through crop 

residue management (mulching), and crop rotation (Hobbs et al., 2008). In practice, these three 

components are not always adopted in combination, so that we consider zero tillage and crop 

residue management as two separate technologies in the adoption analysis. Independent of tillage 

practices, mulching helps to reduce soil evaporation and maximum temperatures in the soil 

surface layers, and to increase water infiltration, soil porosity, and aggregate stability. Finally, 

we consider the use of animal manure as an additional technology to improve nutrient supply and 

organic matter in the soil. 

 

2.2. Factors influencing adoption 

The broad literature on agricultural technology adoption suggests that there are many 

socioeconomic, institutional, and agroecological factors that influence individual adoption 

decisions by farmers. However, as is also known, the importance of each factor and the direction 

of influence also depend on the nature of the technology. In the following paragraphs, we discuss 

important groups of factors that were shown to play a role in the existing literature about the 

adoption of input-intensive and NRM technologies (Gollin et al, 2005; Lee, 2005). This 

discussion will help in selecting explanatory variables in the empirical sections below and 

interpreting the estimation results. 

We start the discussion with socioeconomic characteristics of the farm, the farmer, and 

the farming household. Land area of the farm and other assets owned are often found to affect 

technology adoption in a positive way. This is especially true when adoption requires large 
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investments, but has also been observed for scale-neutral technologies because asset-rich farmers 

are often less risk averse (Feder et al., 1985). Risk aversion can lead to slow and low adoption of 

agricultural technologies, especially when inputs that need to be purchased are involved. Hence, 

one could expect that farm size and risk aversion matter more for input-intensive technologies 

than for NRM technologies. Human capital is another factor that can influence adoption. Better-

educated and more experienced farmers tend to adopt new technologies faster, especially when 

the technologies are knowledge-intensive and require changes in traditional cultivation practices 

(Kabunga et al., 2012). Moreover, the gender of the farmer may play an important role. Women 

farmers are often more constrained in their access to information and markets, so that they adopt 

new technologies slower than their male counterparts (FAO, 2011). Against this background one 

can expect that the gender of the farmer plays a more important role for input-intensive 

technologies. Finally, household availability of other resources required for adoption is 

important. NRM technologies are often more labor-intensive, so that their adoption depends on 

family labor availability (Lee, 2005; Wollni et al., 2010; Noltze et al., 2012). Livestock keeping 

facilitates the use organic manure in crop production, but complicates mulching because crop 

residues may be required as fodder. 

Beyond farm, farmer, and household characteristics, contextual factors can be important. 

Infrastructure and institutional variables, such as distance to markets and access to credit and 

agricultural extension, were shown to influence technology adoption in many empirical studies 

(Feder et al., 1985). Access to extension is particularly important for NRM technologies, as they 

often require experimentation and adaptation to the local context (Lee, 2005: Noltze et al., 2012). 

Furthermore, depending on the type of technology, agroecological factors such as climate and 

soil conditions can matter a lot. For instance, high rainfall can stimulate weed growth and 
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increase water logging (Kassie et al., 2010), which may negatively influence the adoption of zero 

tillage. With frequent droughts and other extreme weather events, farmers tend to adopt practices 

that involve smaller cash outlays to reduce financial risks (Hintze et al., 2003).  

Most technology adoption studies consider agroecological factors at the farm or regional 

level. However, relevant conditions may also vary within farms, which may explain why farmers 

adopt certain technologies on some plots but not on others. Important plot level characteristics 

include plot size, slope, and soil conditions (Amsalu and De Graaff, 2006; Marenya and Barrett, 

2007; Noltze et al., 2012). We expect plot characteristics to play a more important role for the 

adoption of NRM technologies, as these technologies are often more location-specific. For 

instance, soil and water management practices (terracing and soil bunds) are more relevant for 

locations with slopes. Plot ownership status may also play an important role, especially for 

investments with longer-term impacts, such as terracing. 

 

3. Data and descriptive statistics 

3.1. Data 

We use data that we collected recently through a nationally representative survey of maize-

growing farms in Kenya. The data include 4035 plots from 1344 farm households distributed 

across all six maize agroecological zones (AEZs), as defined by Hassan (1998). Households to 

be surveyed were selected using a stratified, two-stage random sampling procedure. In all AEZs, 

we randomly selected sublocations (Kenya’s smallest administrative units) as primary sampling 

units (PSU) and households as secondary sampling units (SSU) based on census data (KNBS, 

2010). The number of sublocations per zone was chosen proportionate to the maize area in that 

zone. In total, we sampled 120 sublocations. In each sublocation, 12 households were randomly 
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selected, except for the coastal lowlands where we selected six households per sublocation due to 

budget constraints. The survey was conducted between December 2012 and February 2013, 

referring to the 2012 cropping year. Data were collected on technology adoption and various 

other farm, farmer, household, and contextual characteristics. 

 

3.2. Descriptive statistics 

Table 1 shows descriptive statistics for the variables that we use to explain technology 

adoption in Kenya. As explained in the previous section, farmers may adopt certain technologies 

on some of their plots but not on others. We therefore carry out the analysis at the plot level, with 

farm and household level variables referring to the farms and households that operate the 

respective plots. The upper part of Table 1 shows adoption rates for the input-intensive and NRM 

technologies considered in this study. Improved maize seeds, including hybrids and improved 

OPVs, were adopted on 72% of the plots. Mineral fertilizers were adopted on 54% of the plots. 

Some of the NRM technologies were also adopted quite widely. On more than 50% of the plots, 

farmers had constructed terraces, managed crop residues, and used organic manure. On the other 

hand, zero tillage was practiced on only 11% of the plots during the 2012 cropping year. 

Table 1 about here 

Variables that we use to explain technology adoption are also shown in Table 1. Plot 

level characteristics include plot size, ownership status, soil fertility, and slope of the land. 

Socioeconomic characteristics include age, education, and gender of the farmer. Unlike many 

other studies that focus on the household head, our human capital variables refer to the person in 

the household responsible for maize farming decisions, which – in many cases – is the wife of 

the male household head. We also include farm size (land owned) and total livestock units (TLU) 
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owned as measures of asset ownership, and the number of household members aged 15 years and 

older as a proxy for family labor availability. 

Risk preferences of farmers were elicited through a simple lottery experiment that we 

conducted during the survey. Each farmer was asked to choose one out of five possible options, 

each with two events of equal probability but different payoffs. For each individual choice, the 

amount that farmers won was randomly determined by drawing a stone from a blinded bag. The 

bag contained five blue and five yellow stones, so the farmers had an equal chance of drawing 

either color. The choice options and the actual distribution of choices are shown in Table 2. 

Lower numbered choices indicate risk aversion, while the highest-numbered choice – which is 

five – represents risk-loving farmers. To normalize farmer’s initial wealth and avoid possible 

financial losses, each farmer was given 50 Kenyan shillings (Ksh) at the beginning of the lottery. 

Before playing with real money, the experiment was practiced with candies to ensure proper 

understanding of the rules and procedures. 

Table 2 about here 

We also use a few institutional variables to explain adoption, such as access to credit for 

agricultural production purposes and distance to the closest market measured in terms of the 

walking hours required to reach the market place (Table 1). Furthermore, we include a group 

membership dummy, capturing farmers’ organizational capital and social connectedness, which 

may play an important role for formal and informal information flows. Many development 

organizations actually build on farmer groups for their community outreach and training 

activities. 

Climatic shocks and weather extremes can also influence technology adoption behavior. 

We include drought and floods as explanatory variables in the adoption model. Both variables 
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are measured in terms of the farmer-reported frequency of events during a period of 10 years 

prior to the survey (2003-2012). Finally, we include dummies for the AEZs into the model, using 

the lowland tropics as the reference zone. Table 3 shows selected climatic and maize-growing 

characteristics of the six AEZs. The highland tropics, the moist transitional, and the moist mid 

altitude zones receive higher levels of rainfall than the other three zones and together account for 

75% of Kenya’s total maize production. Table 3 also shows the distribution of sample 

households across the AEZs. 

Table 3 about here 

 

4. Technology adoption determinants 

4.1. Modeling approach 

As the adoption of specific technologies is not independent of other technological choices 

on the same farm, we employ a multivariate probit (MVP) model that accounts for error term 

correlation (Marenya and Barrett, 2007). The MVP simultaneously models the influence of a set 

of explanatory variables on each of the different technologies, while allowing unobserved and 

unmeasured factors (error terms) to be freely correlated (Lin et al., 2005). Correlation between 

the different adoption decisions may be due to technological complementarities (positive 

correlation) or substitutabilities (negative correlation). If such correlation exists, estimates of 

simple probit models would be biased and inefficient. Our MVP model consists of 7 binary 

choice equations, namely use of improved maize seeds, mineral fertilizer, terracing, soil bunds, 

crop residues, zero tillage, and use of animal manure. We therefore have seven dependent binary 

variables ݕ. 

	݉݅ݕ  ൌ ߚ  ܺ  ݉							ߝ ൌ 1,2… . .7
∗ 	 (1) 
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݉݅ݕ  ൌ ቀ ଵ		௬
∗ வ

	௧௪௦
ቁ (2) 

where ݕ
∗  is a latent variable that captures the unobserved preferences associated with the choice 

of technology m. This latent variable is assumed to be a linear combination of observed 

characteristics, ܺ, and unobserved characteristics captured by the stochastic error term, ߝ. 

The vector of parameters to be estimated is denoted by ߚ. Given the latent nature of ݕ
∗ , 

estimation is based on observable binary variables ݕ, which indicate whether or not a farmer 

used a particular technology in the reference year. 

The error terms ߝ,			ୀଵ,ଶ…..	 are distributed multivariate normal each with mean 0 and a 

variance-covariance matrix V, where V has 1 on the leading diagonal, and correlations 		 ൌ

 : as off diagonal elements

 V ൌ

ە
ۖ
۔

ۖ
ۓ
1 ଵଶ ଵଷ . . ଵ
ଶଵ 1 ଶଷ . . ଶ
ଷଵ ଷଶ 1 . . ଷ
. . . 1 . ସ
. . . . 1 ହ
ଵ ଶ ଷ ସ ହ 1 ۙ

ۖ
ۘ

ۖ
ۗ

 (3) 

The computation of the maximum likelihood function based on a multivariate normal 

distribution requires multidimensional integration. Different simulation methods were proposed 

to approximate such a function (Train, 2002). The Geweke–Hajivassiliou–Keane (GHK) 

simulator is a particularly popular choice in empirical research (Geweke et al., 1997; 

Hajivassiliou et al., 1996). The GHK simulator exploits the fact that a multivariate normal 

distribution function can be expressed as the product of sequentially conditioned univariate 

normal distribution functions, which can be accurately evaluated (Cappellari and Jenkins, 2003). 

We use the GHK approach and employ a simulated maximum likelihood estimator that also 

offers possibilities of cross-equation tests and restrictions in parameters. 
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4.2. Estimation results 

Table 4 presents results of the MVP adoption model. Based on a likelihood ratio test we 

reject the null hypothesis of zero correlation between the error terms (p<0.000), so that the MVP 

is preferred over single-equation probit models. In the Table we report coefficient estimates as 

well as marginal effects. The marginal effects indicate how each explanatory variables influences 

the probability of technology adoption. For dummy variables, the marginal effect shows the 

impact of the variable changing from 0 to 1. 

Plot ownership has a significant effect in most equations, but with different signs. 

Owning the plot increases the probability of adopting stone terraces and soil bunds by 9 and 4 

percentage points, respectively. The probability of using manure is also increased by 8 

percentage points. In contrast, owning the plot decreases the probability of adopting improved 

seeds (4 percentage points), mineral fertilizer (9 percentage points), and zero tillage (5 

percentage points). The positive effect of plot ownership for some of the NRM technologies is 

plausible, especially when certain investments are required. If the plot does not belong to the 

farmer, or if tenure insecurity exists, farmers have little incentive to invest in land-improvement 

technologies that may increase or sustain productivity in the longer run (Feder et al., 1985). The 

negative effect of plot ownership for improved seed and mineral fertilizer adoption is less 

intuitive, but can also be explained. In Kenya, many farmers who grow maize for home 

consumption do not use mineral fertilizer. These subsistence-oriented farmers grow maize 

mostly on their own plots. On the other hand, farmers who rent in land for maize production tend 

to be more commercialized and thus also use more purchased inputs. 

Table 4 about here 
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The size of the plot has a positive effect on adoption of terracing, crop residues, and zero 

tillage, but a negative effect on the use of manure and soil bunds. As the construction of stone 

terraces requires significant investments – including certain cost components that are 

independent of the plot size – adopting this technology on larger plots is more economical. 

Similarly, zero tillage practices are facilitated with certain mechanization equipment (e.g., direct 

seeders), so that economies-of-scale occur. 

We also find that soil fertility affects the adoption of some of the technologies, yet 

without a clear pattern between input-intensive and NRM technologies. Among the input-

intensive technologies, good soil fertility increases the probability of adopting improved seeds, 

while it decreases the probability to adopt mineral fertilizer. Among the NRM technologies, 

good soil fertility has a positive effect on the adoption of stone terraces, and a negative effect on 

the adoption of soil bunds and zero tillage. The slope of the land does not significantly affect the 

adoption of improved seeds, but it increases the adoption of several of the other technologies. 

The adoption of anti-erosion measures such as terracing and zero tillage is more likely on land 

with steep slopes, which is consistent with findings by Marenya and Barrett (2007). Similarly, 

the adoption of fertilizer is more likely on steeper slopes, possibly to compensate for nutrient 

losses through soil erosion. 

In terms of the socioeconomic variables, gender of the farmer seems to matter less for the 

adoption of NRM technologies than for input-intensive technologies, yet the picture is not 

uniform. Male farmers are more likely to adopt improved seeds, supporting the hypothesis that 

female farmers have worse access to new technologies. However, for mineral fertilizer the 

reverse is true: female farmers are more likely to adopt fertilizer. A possible explanation is that 

women are more constrained in their access to information than in their access to the technology 
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itself (Kabunga et al., 2012). Access to good information is probably more important for the 

adoption of improved seeds, where new varieties are frequently released, than for mineral 

fertilizer, where product innovation tends to be less rapid. Farmer age has a positive effect on the 

adoption of improved seeds, crop residues, and manure, probably because older farmers are more 

experienced. However, for crop residue management, this effect is diminishing, possibly because 

very old farmers are less energetic. 

Education of the farmer has a positive influence on the adoption of improved seeds and 

fertilizer. These inputs are relatively easy to use, so this effect is unlikely due to the 

technologies’ complexity. A more plausible explanation is that better-educated farmers have 

more lucrative income sources and thus fewer capital constraints and higher opportunity costs of 

time. Education as a proxy for the opportunity cost of time could also explain the negative effect 

of this variable for some of the NRM technologies, as these technologies tend to be more labor-

intensive. Interestingly, household size, which we use as an indicator of family labor availability, 

is not significant in most of the equations. One exception is fertilizer use, where we observe a 

negative effect of household size. Larger households seem to substitute family labor for other 

yield-increasing inputs and vice versa. 

The results for the risk attitudes of farmers are somewhat surprising. Usually one would 

expect that risk aversion leads to lower technology adoption. We observe the reverse for some of 

the technologies, such as improved seeds, terracing, and crop residue management (remember 

that higher values of the risk index imply that farmers are more risk-loving). While this is 

difficult to explain, we can at least conclude that risk aversion as such is not a major constraint 

for most of the technologies considered here. Farm size plays a significant role for the adoption 

of some technologies, but again without a clear divide between input-intensive and NRM 



14 

technologies. Farmers with larger land areas are more likely to adopt improved seeds, zero 

tillage, and crop residue management, but less likely to adopt soil bunds and manure. 

A larger number of livestock units on the farm increase the probability of manure use in 

maize, but decrease the probability of retaining crop residues in the field. In mixed crop-

livestock systems, farmers often use crop residues as animal fodder. Livestock ownership also 

decreases the probability of mineral fertilizer use, because farmers consider organic manure and 

mineral fertilizer as substitutes. On the other hand, livestock increases the probability of 

improved seed adoption, which may be attributed to wealth effects. Similar to farm size, the 

number of livestock units owned is a wealth indicator, and wealthier farmers are often observed 

to adopt new seed technologies faster. 

In terms of the institutional variables, access to credit facilitates the adoption of several 

technologies, which is unsurprising. However, the public notion that credit-constrained 

smallholders would find it easier to adopt NRM instead of input-intensive technologies cannot be 

confirmed. The reason is that some of the NRM technologies are labor-intensive, so that hired 

labor may be required. Other complementary inputs that have to be purchased may also play a 

role for some NRM technologies. For instance, the adoption of conservation agriculture practices 

is facilitated by the use of chemical herbicides and direct seeder equipment. Distance to market is 

positively associated with crop residue retention, but negatively associated with the adoption of 

improved seeds and mineral fertilizer. This is plausible, because market distance contributes to 

higher transport and transaction costs, so that the use of purchased inputs is less likely in remoter 

areas. Membership in a farmer group does not seem to affect the adoption of input-intensive 

technologies, but the adoption of terraces, soil bunds, and manure is positively influenced. This 

is probably related to different information channels. In Kenya, soil and water conservation 
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techniques are primarily promoted by the government extension system and NGOs that 

increasingly build on farmers groups for their community outreach and extension activities. 

In terms of agro-ecological factors, weather extremes influence technology adoption 

significantly. Farmers who experienced more frequent droughts and floods in the past are less 

likely to adopt improved seeds and mineral fertilizer. It is commonly observed that smallholder 

farmers who operate under erratic weather conditions use fewer purchased inputs to minimize 

the financial risk. On the other hand, more frequent droughts and floods increase the adoption of 

stone terraces. Moreover, drought experience makes it more likely that farmers decide to retain 

crop residues in the field. These technologies help farmers to reduce production risks. As 

explained above, terraces and mulching are mechanisms to reduce water losses through runoff 

and evaporation. Soil bunds, in contrast, are less adopted in flood-prone areas, because floods 

could easily wash away the investment. 

Beyond weather extremes, the AEZ dummies indicate that general climatic factors also 

play a significant role for technology adoption decisions. The lowland tropics, which we use as 

the base category, receive the lowest amount of rainfall. Improved seeds, mineral fertilizer, and 

organic manure are adopted more widely in regions with higher average rainfall. This is 

expected, because more favorable climatic conditions contribute to higher marginal returns to the 

use of these yield-enhancing inputs. Of course, this could be different for the adoption of 

drought-tolerant maize varieties, but such varieties are not yet widely available. Higher rainfall is 

also positively associated with the adoption of stone terraces. On the other hand, we observe 

lower adoption of zero tillage and crop residue management in AEZ with higher average 

rainfalls. This makes sense, because these technologies help to better cope with the stress of too 

little water. 
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5. Complementarities and tradeoffs 

In the previous section, we have analyzed which factors influence the adoption of 

different input-intensive and NRM technologies. The technologies are not mutually exclusive, 

that is, adoption of one technology does not mean that other technologies could not be adopted. 

In this section, we focus more explicitly on complementarities and tradeoffs between the 

different technologies. To better understand which technologies are adopted in combination, one 

can look at the correlation matrix from the MVP model, which is shown in Table A1 in the 

Appendix. A different but related approach is to estimate a probit model for the adoption of each 

technology, where adoption dummies for all the other technologies are used as right-hand-side 

variables. Marginal effects of such probit estimates are presented in Table 5. These results should 

not be interpreted as causal effects. The only purpose is to look at the direction and strength of 

associations between the different adoption variables. 

Table 5 about here 

The negative marginal effects in Table 5 indicate that farmers perceive several tradeoffs 

between certain technologies, or consider these technologies as substitutes. The construction of 

stone terraces is negatively associated with the use of soil bunds. This is expected, because both 

technologies serve the same purpose, only that one is more costly and effective than the other. It 

would not make sense to adopt both in combination. We also observe a negative association 

between mineral fertilizer and organic manure adoption. This is plausible, because both 

technologies deliver nutrients to the soil. Nevertheless, organic and mineral fertilizers have 

different advantages for soil fertility and texture, so that combining both could lead to positive 

synergies. The estimation results also indicate that terracing is negatively associated with the two 
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components of conservation agriculture, namely zero tillage and crop residues. While terracing is 

not a substitute for conservation agriculture, we saw in the previous section that these 

technologies tend to be adopted in different AEZs, terracing more in wetter and conservation 

agriculture more in drier environments. 

There are also a number of positive associations between adoption variables, indicating 

technological complementarities. The adoption of improved seeds is positively associated with 

the adoption of mineral fertilizer. The adoption of zero tillage is positively associated with crop 

residue management. And the construction of stone terraces and soil bunds is positively 

associated with the use of organic manure. Terraces and soil bunds are also positively associated 

with mineral fertilizer use, but apart from this relationship, combinations of input-intensive and 

NRM technologies are rarely observed. 

Most of the positive associations occur either among the input-intensive or among the 

NRM technologies, but not much across these two categories. While this pattern is in line with 

the public notion that input-intensive and NRM technologies are incompatible, such 

incompatibility does not actually exist in reality. While NRM technologies can reduce the need 

for external inputs in situations where these inputs are excessively used, this does not 

automatically mean that optimal input use is zero when NRM technologies are adopted. Recent 

research has shown, for instance, that there is complementarity between the adoption of 

conservation agriculture techniques, improved seeds, and other external inputs (Kassie et al., 

2015). This is in line with the results from our MVP model in the previous section. While we 

found that some technologies are more adopted in certain situations than others, we did not find a 

clear divide in adoption determinants between input-intensive and NRM technologies. 
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When there is no incompatibility, what are the reasons that most farmers adopt either 

input-intensive or NRM technologies rather than a combination of both? We hypothesize that 

this is partly related to different information flows for the two types of technologies. Figure 1 

shows how farmers in our sample learned about different types of technologies. Indeed, 

significant differences in the sources of information can be observed. For NRM technologies, the 

government extension service is the most important source of information, followed by radio, 

other farmers, and NGOs. For improved seeds, the government extension service is also an 

important source of information, but the proportion of farmers who learn about new seeds from 

other sources is significantly higher than for NRM technologies. Input traders and companies are 

important here, whereas they play no role as a source of information for NRM technologies. 

Radio and TV commercials are also more important for input-intensive technologies. This is not 

surprising, because private companies market their products in order to increase commercial 

sales. NGOs, on the other hand, are less important as a source of information for improved seeds 

and other input-intensive technologies. 

One may consider this pattern of information flows as an efficient division of labor. 

Private companies market their products, whereas the public sector and NGOs focus on the 

promotion of NRM technologies for which private sector incentives are lower. This divide is also 

fostered by the bifurcated public debate. Some organizations that promote NRM technologies 

would not promote the use of external inputs at the same time, because of the perceived 

incompatibility. Getting information from different sources and then making informed decisions 

would not be a problem if farmers really had access to the different types of information. 

However, this is often not the case because of high transaction costs involved in obtaining 

information. When farmers happen to have access to only one type of information, the picture 
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they get is incomplete, and synergies between different types of technologies cannot be fully 

exploited. This calls for more balanced extension approaches by all actors involved in farmer 

outreach activities. 

 

6. Conclusion 

We have analyzed the adoption of different input-intensive and NRM technologies 

among maize farmers in Kenya, using data from a recent nationally representative survey. Most 

existing adoption studies have either looked at input-intensive technologies or at NRM 

techniques, using different data and methodologies, so that comparisons were not easily possible. 

We used a multivariate probit model to address this shortcoming. The input-intensive 

technologies considered in this study were improved maize seeds and mineral fertilizer. NRM 

technologies included in the analysis were zero tillage, management of crop residues, organic 

manure, and the construction of terraces and soil bunds. As explanatory variables we included 

plot level, farm level, farmer, and household characteristics, as well as contextual factors 

characterizing infrastructure, institutional, and agroecological conditions. The estimation results 

show that the adoption determinants differ between technologies. For instance, improved seeds, 

mineral fertilizer, manure, and stone terraces are more adopted in regions with higher rainfalls, 

whereas zero tillage and crop residue management are more adopted under drier conditions. 

Gender, education, farm size, market distance, credit access, and several other variables also play 

significant roles, partly with differing signs across technologies. However, we did not find a 

clear divide in terms of adoption determinants between input-intensive and NRM technologies, 

suggesting that there are certain complementarities between the two types of innovations. 
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Nevertheless, we found that input-intensive and NRM technologies are rarely adopted in 

combination. This is due to the fact that the two types of technologies are partly promoted by 

different organizations. NRM technologies are more promoted by the public extension service 

and NGOs, whereas for improved seeds and mineral fertilizer the private sector plays a larger 

role. This divide is fostered by the entrenched public debate about the most appropriate 

strategies. Many in this public debate consider the use of external inputs and NRM techniques as 

two incompatible strategies. But this is short-sighted and prevents more widespread 

implementation of combined approaches that can bring about important synergies. NRM 

technologies can reduce the use of external inputs in situations where such inputs are excessively 

used. But this does not imply that optimal input use is zero when NRM technologies are adopted. 

Especially in the African small farm sector, where little external inputs are used, a combination 

of improved NRM techniques, better seeds, and increased levels of other inputs could 

significantly contribute to sustainable productivity growth. This will require more integrated 

extension and farmer outreach approaches. 
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Table 1: Descriptive statistics of adoption and explanatory variables (N=4035) 

Variable name Variable description Mean Std. 
Dev. 

Technology adoption dummies 
Improved seeds =1if seeds are improved varieties, 0 otherwise 0.72 0.45 
Fertilizer =1 if farmer applied chemical fertilizers, 0 otherwise 0.54 0.50 
Terraces =1if farmers practiced terracing on the plot, 0 otherwise 0.52 0.50 
Soil bunds =1 if the farmer had soil bunds on the plot, 0 otherwise 0.17 0.37 
Crop residues =1if farmer left any crop residues on the plot, 0 otherwise 0.54 0.50 
Zero tillage =1if farmer practiced zero tillage on the plot, 0 otherwise 0.11 0.32 
Manure =1 if the farmer used animal manure, 0 otherwise 0.52 0.50 

Plot level characteristics 
Plot size Size of the plot in acres 1.23 1.54 
Plot ownership =1 if farmer owns the plot, 0 if land is rented in 0.88 0.33 
Medium soil fertility a =1 if soil fertility was rated medium, 0 otherwise 0.51 0.50 
Good soil fertility a =1 if soil fertility was rated good, 0 otherwise 0.37 0.48 
Gentle slope b =1 if the slope on the plot is gentle, 0 otherwise 0.43 0.50 
Medium slope b =1 if the slope on the plot is medium, 0 otherwise  0.20 0.40 
Steep slope b =1 if the slope on the plot is steep, 0 otherwise 0.05 0.22 

Socioeconomic characteristics 
Age of farmer Age of the farmer in years 50.00 14.53 
Male = 1 if the farmer is male, 0 otherwise 0.57 0.50 
Education farmer Years of formal education of the farmer 7.54 3.89 
HH size Number of household members aged >15 years 4.27 1.99 
Farm size Total land owned by the household in acres 5.59 9.11 
TLU Total livestock units 5.85 7.88 
Risk loving Risk attitude of the farmer (discrete scale between 1 and 5); 1 is 

highly risk averse and 5 is risk loving 
3.20 1.45 

Institutional variables 
Credit access =1if the HH has access to credit, 0 otherwise 0.20 0.40 
Group membership =1 if HH participates in any group, 0 otherwise. 0.87 0.33 
Market distance Distance in walking hours to the nearest main market 1.62 1.57 

Weather extremes 
Drought Frequency of drought experienced between 2003-2012  2.21 2.07 
Flooding Frequency of flooding experienced between 2003-2012  0.56 1.73 

AEZ dummies 

Dry mid altitude c =1 if HH is located in the dry mid attitude, 0 otherwise. 0.16 0.37 
Dry transitional c =1 if HH located in the dry transitional zone, 0 otherwise 0.15 0.36 
Moist transitional c =1 if HH located in the moist transitional zone, 0 otherwise  0.26 0.44 
High tropics c =1 if HH is located in the high tropics, 0 otherwise 0.18 0.38 
Moist mid altitude c =1 if HH is located in the moist mid attitude, 0 otherwise. 0.18 0.38 
a Base category is poor soil fertility. b Base category is flat (no slope). c Base category is lowland tropics. 
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Table 2: Risk attitudes of farmers 

Choice 
Payoff (Ksh) a 

Risk preference Proportion of farmer Blue stone 
(p=0.5) 

Yellow stone 
(p=0.5) 

1 50 50 High risk aversion 19.9% 

2 80 30 Moderate risk aversion 7.6% 

3 100 20 Low risk averse 31.4% 

4 120 10 Risk neutral 17.9% 

5 150 -20 Risk loving 23.2% 
a 10 Kenyan Shilling (Ksh) = 0.012 US Dollars (official exchange rate in early 2014). 
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Table 3: Characteristics of maize agroecological zones in Kenya 

Attribute  
Highland 
tropics 

Moist tran-
sitional 

Moist mid 
altitude 

Dry tran-
sitional 

Dry mid 
altitude 

Lowland 
tropics 

Elevation (meters) 1600-2900 1200-2000 1100-1500 1100-1700 700-1400 <700 

Annual rainfall(mm) >1800 1000-1800 800-1200 <800 400-800 400-1400 

Average temperature (°C) 15.2 19.7 22.1 19.7 22 25.5 

Maize area (‘000 ha) 307 461 118 118 118 33 
Share of national maize 
production (%) 

35 20 20 10 10 5 

Potential yield (t/ha) 6.7 5.2 5.2 4.5 2.7 3.3 

Actual yield (t/ha) 2.0 0.7 1.1 1.1 0.5 1.0 
Share of households 
surveyed (%) 

18 26 18 15 16 9 

Source: Adapted from Hassan (1998) and Jaetzold et al. (2005). 
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Table 4: Results of the multivariate probit model 

  Improved seeds Fertilizer Terraces Soil bunds 

Coefficient 
Std 

Error 
Marginal 
effects Coefficient

Std 
Error 

Marginal 
effects Coefficient 

Std 
Error 

Marginal 
effects Coefficient 

Std 
Error 

Marginal 
effects 

Plot level characteristics 
Plot size 0.032 0.020 0.009 -0.022 0.017 -0.006 0.043*** 0.016 0.014 ‐0.039** 0.019 -0.009 
Plot ownership -0.127* 0.076 -0.036 -0.289*** 0.073 -0.085 0.285*** 0.067 0.094 0.167** 0.076 0.040 
Medium soil fertility 0.194*** 0.070 0.056 0.017 0.072 0.005 0.174** 0.069 0.057 -0.043 0.076 -0.010 
Good soil fertility 0.367*** 0.075 0.105 -0.168** 0.075 -0.050 0.149** 0.072 0.049 -0.272*** 0.081 -0.065 
Gentle slope 0.036 0.054 0.010 0.082 0.053 0.024 0.549*** 0.05 0.181 -0.135** 0.057 -0.032 
Medium slope 0.088 0.067 0.025 0.341*** 0.065 0.100 0.899*** 0.063 0.296 -0.066 0.069 -0.016 
Steep slope 0.12 0.116 0.034 0.662*** 0.117 0.196 1.083*** 0.119 0.356 0.1 0.116 0.023 
socio economic characteristics 
Male 0.114** 0.05 0.033 -0.126** 0.049 -0.037 0.067 0.047 0.022 0.150*** 0.053 0.036 
Age of farmer 0.019** 0.01 0.005 -0.003 0.010 -0.001 0.003 0.009 0.000 0.006 0.011 0.001 
Age of farmer SQ 0.000 0.000 -3.8e-5 1.12e-4 0.000 3.3e-5 3.6e-5 0.000 1e-05 -4.42e-05 0.000 -1.1e-5 
Education farmer 0.043*** 0.007 0.012 0.070*** 0.007 0.021 0.011 0.006 0.003 0.014* 0.007 0.003 
Land size 0.009** 0.004 0.003 0.002 0.003 0.000 -0.001 0.003 -0.000 ‐0.010** 0.004 -0.002 
TLU 0.011*** 0.004 0.003 -0.012*** 0.003 -0.003 -0.002 0.003 -0.001 0.001 0.004 0.000 
Risk taking -0.043*** 0.016 -0.012 -0.006 0.016 -0.002 -0.071*** 0.016 -0.023 0.036** 0.018 0.009 
HH size -0.015 0.013 -0.004 -0.024** 0.012 -0.007 -0.022* 0.012 -0.007 -0.003 0.014 -0.001 
Institutional variables 
Group 
membership 0.077 0.072 0.022 0.076 0.074 0.023 0.214*** 0.069 0.070 0.158** 0.080 0.038 
Distance market -0.038*** 0.014 -0.011 -0.025* 0.014 -0.007 0.022 0.014 0.007 -0.008 0.016 -0.002 
Credit 0.175*** 0.059 0.05 0.276*** 0.057 0.082 -0.015 0.053 -0.005 0.142** 0.059 0.034 
Climatic shocks 
Drought ‐0.028**  0.011 -0.008 -0.091*** 0.012 -0.026 0.019* 0.011 0.006 ‐0.027** 0.013 -0.006 
Flooding -0.015 0.013 -0.004 0.016 0.013 0.005 0.039*** 0.012 0.013 -0.056*** 0.016 -0.013 
AEZ  
Dry Mid altitude -0.166* 0.097 -0.048 -0.053 0.109 -0.016 1.157*** 0.101 0.380 0.044 0.115 0.010 
Dry transitional 0.248** 0.099 0.071 0.905*** 0.107 0.268 1.174*** 0.103 0.385 -0.118 0.118 -0.028 
Moist transitional 0.823*** 0.105 0.236 1.431*** 0.109 0.423 0.416*** 0.102 0.137 0.143 0.115 0.034 
High tropics 0.882*** 0.122 0.253 1.670*** 0.122 0.494 -0.026 0.112 -0.008 0.496*** 0.123 0.119 
Moist mid altitude -0.361*** 0.099 -0.103 0.363*** 0.107 0.107 0.373*** 0.103 0.123 -0.179 0.119 -0.043 
Constant -0.615** 0.262 -0.793*** 0.272 -1.662*** 0.262 -1.428*** 0.298 
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  Crop residues Zero tillage Manure 

Coefficient Std. error 
Marginal 

effects Coefficient Std. error 
Marginal 

effects Coefficient Std. error 
Marginal 

effects 

Plot level characteristics 
Plot size 0.083*** 0.018 0.024 0.045*** 0.017 0.013 -0.060*** 0.016 -0.017 
Plot ownership -0.079 0.069 -0.023 -0.157* 0.081 -0.045 0.274*** 0.065 0.078 
Medium soil fertility 0.073 0.074 0.021 -0.376*** 0.082 -0.108 0.062 0.067 0.018 
Good soil fertility 0.086 0.076 0.025 -0.251*** 0.085 -0.072 -0.067 0.069 -0.019 
Gentle slope 0.104** 0.053 0.030 -0.053 0.065 -0.015 0.119** 0.049 0.034 
Medium slope 0.106* 0.064 0.030 -0.044 0.082 -0.013 0.091 0.060 0.026 
Steep slope 0.018 0.109 0.005 0.686*** 0.118 0.197 -0.061 0.101 -0.017 
Socioeconomic characteristics 
Male -0.037 0.048 -0.011 -0.034 0.060 -0.010 -0.028 0.045 -0.008 
Age of farmer 0.028*** 0.010 0.008 -0.001 0.012 0.000 0.021** 0.009 0.006 
Age squared -3.8e-4*** 0.000 -1.1e-4 -3.5e-5 0.000 -9.9e-6 -0.001 0.000 -2.9e-5 
Education farmer -0.0126* 0.007 -0.004 -0.017** 0.008 0.000 -0.003 0.006 -0.001 
Farm size 0.011*** 0.003 0.003 0.010*** 0.003 0.003 -0.012*** 0.003 -0.003 
TLU -0.010*** 0.003 -0.003 0.009*** 0.003 0.003 0.017*** 0.003 0.005 
Risk loving -0.044*** 0.016 -0.013 0.003 0.02 0.001 0.02 0.015 0.006 
HH size 0.004 0.012 0.001 0.007 0.015 0.002 -0.038 0.011 -0.011 
Institutional variables 
Group membership 0.037 0.071 0.011 0.016 0.086 0.005 0.286*** 0.066 0.082 
Market distance 0.030** 0.015 0.009 -0.007 0.017 -0.002 -0.035*** 0.014 -0.010 
Credit access 0.164*** 0.055 0.047 0.157** 0.068 0.045 -0.123** 0.051 -0.035 
Weather extremes 
Drought 0.036*** 0.011 0.010 0.008 0.014 0.002 -0.017 0.011 -0.005 
Flooding 0.015 0.014 0.010 0.002 0.015 0.001 -0.017 0.012 -0.005 
AEZ  
Dry mid altitude -1.917*** 0.122 -0.550 -0.478*** 0.113 -0.137 0.674*** 0.096 0.193 
Dry transitional -1.965*** 0.124 -0.563 -0.809*** 0.125 -0.232 0.576*** 0.097 0.165 
Moist transitional -0.883*** 0.123 -0.253 -0.279** 0.113 -0.080 0.073 0.098 0.021 
High tropics -0.920*** 0.131 -0.264 -0.254** 0.124 -0.073 0.027 0.107 0.008 
Moist mid altitude -0.127 0.127 -0.036 -0.473*** 0.116 -0.136 0.220** 0.098 0.063 

Constant 0.737*** 0.278 -0.414 0.325 -1.269*** 0.249

Notes: N=4035; log likelihood = -11772.70; Wald chi2 = 4169.45; likelihood ratio test of rho chi2 (21) = 662.488. ***, **, * significant at 1%, 5%, and 10% level, respectively. 
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Table 5: Simple probit models showing relationships between technologies 

 
Improved 

seeds 
Fertilizers Terraces Soil bunds 

Crop 
residues 

Zero tillage Manure 

Improved seeds 0.351*** 0.010 0.021* -0.009 -0.003 0.030 
(0.016) (0.019) (0.012) (0.019) (0.012) (0.019) 

Fertilizers 0.284*** 0.040** 0.024** -0.030* 0.006 -0.086*** 
(0.014) (0.017) (0.012) (0.017) (0.010) (0.017) 

Terraces 0.007 0.040** -0.225*** -0.162*** -0.020* 0.109*** 
(0.015) (0.017) (0.012) (0.017) (0.010) (0.017) 

Soil bunds 0.029 0.048** -0.402*** -0.011 0.019 0.111*** 
(0.019) (0.023) (0.017) (0.023) (0.014) (0.022) 

Crop residues -0.006 -0.030* -0.159*** -0.003 0.051*** -0.142*** 
(0.015) (0.017) (0.016) (0.011) (0.010) (0.016) 

Zero tillage -0.004 0.015 -0.054** 0.029 0.131*** -0.032 
(0.023) (0.026) (0.027) (0.019) (0.024) (0.026) 

Manure 0.023 -0.084*** 0.107*** 0.057*** -0.141*** -0.012 
(0.015) (0.017) (0.017) (0.011) (0.016) (0.010) 

Notes: Marginal effects are shown with standard errors in parentheses. N= 4035. ***, **, * significant at 1%, 5%, and 
10% level, respectively.  
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Figure 1: Farmers’ sources of information for different technologies (proportions) 

 
Note: Based on a chi-squared test the null hypothesis of equal proportions across technologies is rejected (p=0.000). 
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Appendix  
 
 
Table A1: Correlation matrix from the MVP model 

 
Improved 

seeds 
Fertilizer Terraces 

Soil 
bunds 

Crop 
residues 

Zero 
tillage 

Manure 

Improved seeds 1 

Fertilizer 0.382*** 1 
(0.028) 

Terraces 0.057* 0.153*** 1 
(0.030) (0.029) 

Soil bunds -0.015 -0.071** -0.595*** 1 
(0.036) (0.033) (0.024) 

Crop residues -0.018 -0.065** -0.051* 0.113*** 1 
(0.031) (0.030) (0.029) (0.032) 

Zero tillage -0.033 0.024 -0.058 0.096** 0.142*** 1 
(0.039) (0.039) (0.036) (0.039) (0.038) 

Manure 0.084*** -0.055* 0.048* 0.087*** -0.101*** -0.004 1 
(0.029) (0.028) (0.027) (0.030) (0.028) (0.034) 

Note: Numbers in parenthesis are p-values. The likelihood ratio test of equal correlation coefficients is rejected (p< 0.000). N= 
4035. ***, **, * significant at 1%, 5%, and 10% level, respectively.  


